User Tools

Site Tools


c:ms:2018:schedule:week03

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
c:ms:2018:schedule:week03 [2018/03/21 07:57] hkimscilc:ms:2018:schedule:week03 [2018/03/21 08:09] (current) – [Central Tendency] hkimscil
Line 1: Line 1:
 ====== Week 3 내용 ====== ====== Week 3 내용 ======
-===== SPSS ===== 
-<del>Chapter 3</del>, Chapter 4 
- 
-  * SPSS 
- 
-  * [[http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/MentalRotation.dat|Table 3.1 data file]]. for SPSS, excel format, see the below.  
-    * Explanation: Read the textbook for yourself (Chapter 3) 
-  * frequency distribution 
-  * histogram 
-  * stem and leaf display.  
-    * watch [[https://www.youtube.com/watch?v=6JM80zb2fes|How to create a Stem and Leaf Plot in Microsoft Excel]] 
-    * watch [[https://www.youtube.com/watch?v=atWwZmIEZ9Q|Spss]] 
- 
 ===== Central Tendency ===== ===== Central Tendency =====
- 
   * Central Tendency (집중경향)   * Central Tendency (집중경향)
-    * data: {{:data_rtsec.sav|SPSS data file, rtsec}} or {{:data_rtsec.xlsx|Excel file}} 
- 
-<code> 
-Statistics  
-RTsec  
-N Valid 600 
- Missing 0 
-Mean 1.6245 
-Median 1.5300 
-Mode 1.33 
-</code> 
- 
-<code>Descriptives  
- StatisticStd. Error 
-RTsec Mean 1.6245 .02603 
- 95% Confidence Lower 1.5734  
- Interval Upper 1.6756  
-        for Mean 
- 5% Trimmed Mean 1.5672  
- Median 1.5300  
- Variance .407  
- Std. Deviation .63772  
- Minimum .72  
- Maximum 4.44  
- Range 3.72  
- Interquartile Range .77  
- Skewness 1.465 .100 
- Kurtosis 2.849 .199 
-</code> 
-{{:hist.jpg}} 
- 
-data file: {{:Ex3-1.sav}} 읽지 않은 지문에 대한 답을 한 학생들의 점수 (Katz, 1990). 
- 
-<code>NOPASSAG Stem-and-Leaf Plot 
- 
- Frequency    Stem &  Leaf 
- 
-     1.00        3 .  4 
-     5.00        3 .  66689 
-     5.00        4 .  33444 
-     7.00        4 .  6666799 
-     5.00        5 .  01224 
-     5.00        5 .  55577 
- 
- Stem width:   10.00 
- Each leaf:       1 case(s) 
-</code> 
-{{:Fig.4.1.jpg}} 
- 
-Chapter 5 
   * Dispersion (variability) -- 분산(변산성)   * Dispersion (variability) -- 분산(변산성)
-  * Data file: [[http://www.uvm.edu/~dhowell/fundamentals7/DataFiles/Tab5-1.dat|Web site]] or {{:Tab5-1.sav}} p.86-7 
   * [[:range]]   * [[:range]]
   * [[:outliers]]: It is beyond our scope. Please just refer to it. Won't be appearing in tests.    * [[:outliers]]: It is beyond our scope. Please just refer to it. Won't be appearing in tests. 
-  * 평균편차 +  * [[:Variance]] 분산 혹은 변량 
-  * [[:Variance]] 변량 +
     * 표본변량 $ s^2 $     * 표본변량 $ s^2 $
     * 모집단변량(전집) $ \sigma^2 $     * 모집단변량(전집) $ \sigma^2 $
- 
-<code>Descriptives  
- SET Statistic Std. Error 
-ATTRACT 4 Mean 2.6445 .14651 
- 95% Confidence Lower Bound 2.3379  
- Interval for Upper Bound 2.9511  
- Mean 
- 5% Trimmed Mean 2.6483  
- Median 2.5950  
- Variance .429  
- Std. Deviation .65520  
- Minimum 1.20  
- Maximum 4.02  
- Range 2.82  
- Interquartile Range .82  
- Skewness -.001 .512 
- Kurtosis .438 .992 
- 32 Mean 3.2615 .01541 
- 95% Confidence Interval for Mean Lower Bound 3.2292  
- Upper Bound 3.2938  
- 5% Trimmed Mean 3.2622  
- Median 3.2650  
- Variance .005  
- Std. Deviation .06892  
- Minimum 3.13  
- Maximum 3.38  
- Range .25  
- Interquartile Range .11  
- Skewness -.075 .512 
- Kurtosis -.863 .992 
-</code> 
   * [[:Standard Deviation]] 표준편차   * [[:Standard Deviation]] 표준편차
- 
   * Variance calculation formula   * Variance calculation formula
     * {{anchor:variance_calculation_formula}} $ \displaystyle S_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N-1} $     * {{anchor:variance_calculation_formula}} $ \displaystyle S_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N-1} $
     * $ \displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 $     * $ \displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 $
- 
   * [[:Degrees of Freedom]] N-1   * [[:Degrees of Freedom]] N-1
     * [[:Why n-1]]     * [[:Why n-1]]
Line 119: Line 20:
   * [[:Standard Error]]   * [[:Standard Error]]
 ===== CLT에 관한 정리 ===== ===== CLT에 관한 정리 =====
-우선, Expected value (기대값)와 Variance (분산)의 연산은 아래와 같이 계산될 수 있다. 
- 
-X,Y 가 서로 독립적이라고 할 때: 
-\begin{eqnarray} 
-E[aX] = a E[X] \\ 
-E[X+Y] = E[X] + E[Y] \\ 
-Var[aX] = a^{\tiny{2}} Var[X] \\ 
-Var[X+Y] = Var[X] + Var[Y]   
-\end{eqnarray} 
- 
-이때, 한 샘플의 평균값을 $X$ 라고 하면, 평균들의 합인 $S_k$ 는  
- 
-$$ S_{k} = X_1 + X_2 + . . . + X_k $$ 
- 
-와 같다. 
- 
-이렇게 얻은 샘플들(k 개의)의 평균인 $ A_k $ 는,  
- 
-$$ A_k = \displaystyle \frac{(X_1 + X_2 + . . . + X_k)}{k} = \frac{S_{k}}{k} $$ 
- 
-라고 할 수 있다.  
- 
-이때,  
- 
-$$  
-\begin{align*} 
-E[S_k] & = E[X_1 + X_2 + . . . +X_k] \\ 
-   & = E[X_1] + E[X_2] + . . . + E[X_k] \\ 
-   & = \mu + \mu + . . . + \mu = k * \mu \\ 
-\end{align*} 
-$$ 
-  
-$$  
-\begin{align*} 
-Var[S_k] & = Var[X_1 + X_2 + . . . +X_k]  \\ 
-     & = Var[X_1] + Var[X_2] + \dots + Var[X_k] \\ 
-     & = k * \sigma^2  
-\end{align*} 
-$$ 
- 
-이다. 
- 
-그렇다면, $ A_k $ 에 관한 기대값과 분산값은:  
- 
-$$  
-\begin{align*} 
-E[A_k] & = E[\frac{S_k}{k}] \\ 
- & = \frac{1}{k}*E[S_k] \\ 
- & = \frac{1}{k}*k*\mu = \mu  
-\end{align*} 
-$$ 
- 
-이고, 
- 
-$$ 
-\begin{align*} 
-Var[A_k] & = Var[\frac{S_k}{k}] \\ 
- & = \frac{1}{k^2} Var[S_k] \\ 
- & = \frac{1}{k^2}*k*\sigma^2 \\ 
- & = \frac{\sigma^2}{k} \nonumber 
-\end{align*} 
-$$ 
- 
-라고 할 수 있다.  
- 
  
c/ms/2018/schedule/week03.1521588439.txt.gz · Last modified: 2018/03/21 07:57 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki