the_binomial_theorem
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
the_binomial_theorem [2020/11/03 20:41] – [계수] hkimscil | the_binomial_theorem [2020/11/18 00:20] (current) – hkimscil | ||
---|---|---|---|
Line 78: | Line 78: | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
&{0 \choose 0}& | &{0 \choose 0}& | ||
- | &{1 \choose 0}{1 \choose 1}& \\ | + | &{1 \choose 0} \; {1 \choose 1}& \\ |
- | &{2 \choose 0}{2 \choose 1}{2 \choose 2}& \\ | + | &{2 \choose 0}\; {2 \choose 1}\; {2 \choose 2}& \\ |
- | &{3 \choose 0}{3 \choose 1}{3 \choose 2}{3 \choose 3}& \\ | + | &{3 \choose 0}\; {3 \choose 1}\; {3 \choose 2}\; {3 \choose 3}& \\ |
- | &{4 \choose 0}{4 \choose 1}{4 \choose 2}{4 \choose 3}{4 \choose 4}& \\ | + | &{4 \choose 0}\; {4 \choose 1}\; {4 \choose 2}\; {4 \choose 3}\; {4 \choose 4}& \\ |
+ | &{5 \choose 0}\; {5 \choose 1}\; {5 \choose 2}\; {5 \choose 3}\; {5 \choose 4}\; {5 \choose 5} & \\ | ||
\end{eqnarray*} | \end{eqnarray*} | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
- | & | + | & {\large |
- | & 1 1 & \\ | + | & {\large |
- | & 1 2 1 & \\ | + | & {\large |
- | & 1 3 3 1 & \\ | + | & {\large |
- | & 1 4 6 4 1 & \\ | + | & {\large |
+ | & {\large 1\quad 5\quad 10\quad 10\quad 5\quad | ||
\end{eqnarray*} | \end{eqnarray*} | ||
+ | |||
+ | 따라서 | ||
+ | \begin{eqnarray*} | ||
+ | & a^5 + a^4 + a^3 + a^2 + a^1 + a^0 & \\ | ||
+ | & b^0 + b^1 + b^2 + b^3 + b^4 + b^5 & \\ | ||
+ | & 1 + 5 + 10 + 10 + 5 + 1 & \\ | ||
+ | & a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 & \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | |||
위를 종합해서 정리하면 | 위를 종합해서 정리하면 | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
\text{The binomial theorem} & & \\ | \text{The binomial theorem} & & \\ | ||
- | (a + b)^{m} & = & \sum^{m}_{y=0}{{m}\choose{y}} a^{y} b^{m-y} \\ | + | (a + b)^{n} & = & \sum^{n}_{k=0}{{n}\choose{k}} a^{n-k} b^{k} \\ |
\end{eqnarray*} | \end{eqnarray*} | ||
+ | |||
+ | 예를 들면, 아래와 같다. ($n = 3$ 인경우) | ||
+ | \begin{eqnarray*} | ||
+ | (a + b)^{3} & = & \sum^{3}_{k=0}{{3}\choose{k}} a^{3-k} b^{k} \\ | ||
+ | & = & {{3}\choose{0}} a^{3-0} b^{0} + {{3}\choose{1}} a^{3-1} b^{1} + {{3}\choose{2}} a^{3-2} b^{2} + {{3}\choose{3}} a^{3-3} b^{3} \\ | ||
+ | & = & 1 \cdot a^{3} b^{0} + 3 \cdot a^{2} b^{1} + 3 \cdot a^{1} b^{2} + 1 \cdot a^{0} b^{3} \\ | ||
+ | & = & a^{3} + 3a^{2} b + 3ab^{2} + b^{3} | ||
+ | \end{eqnarray*} | ||
+ | |||
the_binomial_theorem.1604403696.txt.gz · Last modified: 2020/11/03 20:41 by hkimscil