the_binomial_theorem
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
the_binomial_theorem [2020/11/03 20:32] – [계수] hkimscil | the_binomial_theorem [2020/11/18 00:20] (current) – hkimscil | ||
---|---|---|---|
Line 72: | Line 72: | ||
<WRAP info> | <WRAP info> | ||
+ | 그렇다면, | ||
$(a + b)^5 = {\text ?} $ | $(a + b)^5 = {\text ?} $ | ||
</ | </ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | &{0 \choose 0}& | ||
+ | &{1 \choose 0} \; {1 \choose 1}& \\ | ||
+ | &{2 \choose 0}\; {2 \choose 1}\; {2 \choose 2}& \\ | ||
+ | &{3 \choose 0}\; {3 \choose 1}\; {3 \choose 2}\; {3 \choose 3}& \\ | ||
+ | &{4 \choose 0}\; {4 \choose 1}\; {4 \choose 2}\; {4 \choose 3}\; {4 \choose 4}& \\ | ||
+ | &{5 \choose 0}\; {5 \choose 1}\; {5 \choose 2}\; {5 \choose 3}\; {5 \choose 4}\; {5 \choose 5} & \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | & {\large 1} & \\ | ||
+ | & {\large 1\quad 1} & \\ | ||
+ | & {\large 1\quad 2\quad 1} & \\ | ||
+ | & {\large 1\quad 3\quad 3\quad 1} & \\ | ||
+ | & {\large 1\quad 4\quad 6\quad 4\quad 1} & \\ | ||
+ | & {\large 1\quad 5\quad 10\quad 10\quad 5\quad 1} & \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | 따라서 | ||
+ | \begin{eqnarray*} | ||
+ | & a^5 + a^4 + a^3 + a^2 + a^1 + a^0 & \\ | ||
+ | & b^0 + b^1 + b^2 + b^3 + b^4 + b^5 & \\ | ||
+ | & 1 + 5 + 10 + 10 + 5 + 1 & \\ | ||
+ | & a^5 + 5a^4b + 10a^3b^2 + 10a^2b^3 + 5ab^4 + b^5 & \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | |||
+ | |||
+ | 위를 종합해서 정리하면 | ||
+ | \begin{eqnarray*} | ||
+ | \text{The binomial theorem} & & \\ | ||
+ | (a + b)^{n} & = & \sum^{n}_{k=0}{{n}\choose{k}} a^{n-k} b^{k} \\ | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | 예를 들면, 아래와 같다. ($n = 3$ 인경우) | ||
+ | \begin{eqnarray*} | ||
+ | (a + b)^{3} & = & \sum^{3}_{k=0}{{3}\choose{k}} a^{3-k} b^{k} \\ | ||
+ | & = & {{3}\choose{0}} a^{3-0} b^{0} + {{3}\choose{1}} a^{3-1} b^{1} + {{3}\choose{2}} a^{3-2} b^{2} + {{3}\choose{3}} a^{3-3} b^{3} \\ | ||
+ | & = & 1 \cdot a^{3} b^{0} + 3 \cdot a^{2} b^{1} + 3 \cdot a^{1} b^{2} + 1 \cdot a^{0} b^{3} \\ | ||
+ | & = & a^{3} + 3a^{2} b + 3ab^{2} + b^{3} | ||
+ | \end{eqnarray*} | ||
+ | |||
the_binomial_theorem.1604403159.txt.gz · Last modified: 2020/11/03 20:32 by hkimscil