summary_of_hypothesis_testing
This is an old revision of the document!
n.ajstu <- 100000 mean.ajstu <- 100 sd.ajstu <- 10 set.seed(1024) ajstu <- rnorm2(n.ajstu, mean=mean.ajstu, sd=sd.ajstu) mean(ajstu) sd(ajstu) var(ajstu) iter <- 10000 # # of sampling n.4 <- 4 means4 <- rep (NA, iter) for(i in 1:iter){ means4[i] = mean(sample(ajstu, n.4)) } n.25 <- 25 means25 <- rep (NA, iter) for(i in 1:iter){ means25[i] = mean(sample(ajstu, n.25)) } n.100 <- 100 means100 <- rep (NA, iter) for(i in 1:iter){ means100[i] = mean(sample(ajstu, n.100)) } n.400 <- 400 means400 <- rep (NA, iter) for(i in 1:iter){ means400[i] = mean(sample(ajstu, n.400)) } n.900 <- 900 means900 <- rep (NA, iter) for(i in 1:iter){ means900[i] = mean(sample(ajstu, n.900)) } n.1600 <- 1600 means1600 <- rep (NA, iter) for(i in 1:iter){ means1600[i] = mean(sample(ajstu, n.1600)) } n.2500 <- 2500 means2500 <- rep (NA, iter) for(i in 1:iter){ means2500[i] = mean(sample(ajstu, n.2500)) } h4 <- hist(means4) h25 <- hist(means25) h100 <- hist(means100) h400 <- hist(means400) h900 <- hist(means900) h1600 <- hist(means1600) h2500 <- hist(means2500) plot(h4, ylim=c(0,3000), col="red") plot(h25, add = T, col="blue") plot(h100, add = T, col="green") plot(h400, add = T, col="grey") plot(h900, add = T, col="yellow") m4 <- mean(means4) m25 <- mean(means25) m100 <- mean(means100) m400 <- mean(means400) m900 <- mean(means900) m1600 <- mean(means1600) m2500 <- mean(means2500) s4 <- sd(means4) s25 <- sd(means25) s100 <- sd(means100) s400 <- sd(means400) s900 <- sd(means900) s1600 <- sd(means1600) s2500 <- sd(means2500) sss <- c(4,25,100,400,900,1600,2500) # sss sample sizes means <- c(m4, m25, m100, m400, m900, m1600, m2500) sds <- c(s4, s25, s100, s400, s900, s1600, s2500) temp <- data.frame(sss, means, sds) temp ses <- rep (NA, length(sss)) # std error memory for(i in 1:length(sss)){ ses[i] = sqrt(var(ajstu)/sss[i]) # std errors by theorem } data.frame(ses) se.1 <- ses se.2 <- 2 * ses lower.s2 <- mean(ajstu)-se.2 upper.s2 <- mean(ajstu)+se.2 data.frame(cbind(sss, ses, lower.s2, upper.s2)) n <- 200 mean.sample <- 103 diff <- mean.sample - mean.ajstu se <- sd.ajstu / sqrt(n) diff/se qnorm(0.025, lower.tail = F) qnorm(0.01/2, lower.tail = F)
summary_of_hypothesis_testing.1733096556.txt.gz · Last modified: 2024/12/02 08:42 by hkimscil