User Tools

Site Tools


statistical_review

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
statistical_review [2017/12/11 08:50] hkimscilstatistical_review [2023/10/05 17:30] (current) – [Rules for the Covariance] hkimscil
Line 1: Line 1:
 ====== Rules for Variance ====== ====== Rules for Variance ======
-$$ +see [[:expected value and variance properties]] 
-\DeclareMathOperator{\Var}{Var} +====== Rules for the Covariance ====== 
-\DeclareMathOperator{\Cov}{Cov} +see [[:covariance properties]]
-\DeclareMathOperator{\Corr}{Corr} +
-$$ +
- +
-  - The variance of a constant is zero.  +
-    * $ \sigma_{c} {VAR}(c) 0 $ +
-  - Adding a constant value, c to a variable does not change variance (because the expectation increases by the same amount).   +
-    * $ \sigma_{x+c} VAR(X+c) E[((X_{i} + c)-E(\overline{X} + c))^{2}] VAR(X) $ +
-  - Multiplying a constant value, c to a variable increase the variance by square of the constant, c.   +
-    * $\sigma_{c*x} VAR(cX) c^{2}VAR(X) $ +
-  - The variance of the sum of two or more random variables is equal to the sum of each of their variances only when the random variables are independent.   +
-    * $\Var(X+Y) \Var(X) + 2 \Cov(X,Y) + \Var(Y) $ +
-    * because X and Y are independent to each other Covariance X and Y is 0. +
-    * $\Var(X+Y) \Var(X) + \Var(Y) $ +
-  -  +
statistical_review.1512951653.txt.gz · Last modified: 2017/12/11 08:50 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki