sampling_distribution_in_r
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
sampling_distribution_in_r [2024/03/20 13:57] – [Sampling distribution in R e.g. 1] hkimscil | sampling_distribution_in_r [2025/03/24 09:00] (current) – hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Sampling distribution in R e.g. 1 ====== | ====== Sampling distribution in R e.g. 1 ====== | ||
< | < | ||
+ | # sampling distribution | ||
n.ajstu <- 100000 | n.ajstu <- 100000 | ||
mean.ajstu <- 100 | mean.ajstu <- 100 | ||
Line 77: | Line 78: | ||
ses[i] = sqrt(var(ajstu)/ | ses[i] = sqrt(var(ajstu)/ | ||
} | } | ||
+ | ses.means4 <- sqrt(var(means4)) | ||
+ | ses.means25 <- sqrt(var(means25)) | ||
+ | ses.means100 <- sqrt(var(means100)) | ||
+ | ses.means400 <- sqrt(var(means400)) | ||
+ | ses.means900 <- sqrt(var(means900)) | ||
+ | ses.means1600 <- sqrt(var(means1600)) | ||
+ | ses.means2500 <- sqrt(var(means2500)) | ||
+ | ses.real <- c(ses.means4, | ||
+ | ses.means100, | ||
+ | ses.means900, | ||
+ | ses.means2500) | ||
+ | ses.real | ||
ses | ses | ||
Line 84: | Line 97: | ||
lower.s2 <- mean(ajstu)-se.2 | lower.s2 <- mean(ajstu)-se.2 | ||
upper.s2 <- mean(ajstu)+se.2 | upper.s2 <- mean(ajstu)+se.2 | ||
- | data.frame(cbind(sss, | + | data.frame(cbind(sss, |
</ | </ | ||
+ | 아웃풋 | ||
+ | < | ||
+ | > n.ajstu <- 100000 | ||
+ | > mean.ajstu <- 100 | ||
+ | > sd.ajstu <- 10 | ||
+ | > set.seed(1024) | ||
+ | > ajstu <- rnorm2(n.ajstu, | ||
+ | > mean(ajstu) | ||
+ | [1] 100 | ||
+ | > sd(ajstu) | ||
+ | [1] 10 | ||
+ | > var(ajstu) | ||
+ | | ||
+ | [1,] 100 | ||
+ | > iter <- 10000 # # of sampling | ||
+ | > n.4 <- 4 | ||
+ | > means4 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.25 <- 25 | ||
+ | > means25 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.100 <- 100 | ||
+ | > means100 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.400 <- 400 | ||
+ | > means400 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.900 <- 900 | ||
+ | > means900 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.1600 <- 1600 | ||
+ | > means1600 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > n.2500 <- 2500 | ||
+ | > means2500 <- rep (NA, iter) | ||
+ | > for(i in 1:iter){ | ||
+ | + | ||
+ | + } | ||
+ | > h4 <- hist(means4) | ||
+ | > h25 <- hist(means25) | ||
+ | > h100 <- hist(means100) | ||
+ | > h400 <- hist(means400) | ||
+ | > h900 <- hist(means900) | ||
+ | > h1600 <- hist(means1600) | ||
+ | > h2500 <- hist(means2500) | ||
+ | > plot(h4, ylim=c(0, | ||
+ | > plot(h25, add = T, col=" | ||
+ | > plot(h100, add = T, col=" | ||
+ | > plot(h400, add = T, col=" | ||
+ | > plot(h900, add = T, col=" | ||
+ | > sss <- c(4, | ||
+ | > ses <- rep (NA, length(sss)) # std errors | ||
+ | > for(i in 1: | ||
+ | + | ||
+ | + } | ||
+ | > ses | ||
+ | [1] 5.0000000 2.0000000 1.0000000 0.5000000 0.3333333 0.2500000 | ||
+ | [7] 0.2000000 | ||
+ | > se.1 <- ses | ||
+ | > se.2 <- 2 * ses | ||
+ | > lower.s2 <- mean(ajstu)-se.2 | ||
+ | > upper.s2 <- mean(ajstu)+se.2 | ||
+ | > data.frame(cbind(sss, | ||
+ | | ||
+ | 1 4 5.0000000 90.00000 110.0000 | ||
+ | 2 25 2.0000000 96.00000 104.0000 | ||
+ | 3 100 1.0000000 98.00000 102.0000 | ||
+ | 4 400 0.5000000 99.00000 101.0000 | ||
+ | 5 900 0.3333333 99.33333 100.6667 | ||
+ | 6 1600 0.2500000 99.50000 100.5000 | ||
+ | 7 2500 0.2000000 99.60000 100.4000 | ||
+ | > sss <- c(4, | ||
+ | > ses <- rep (NA, length(sss)) # std errors | ||
+ | > for(i in 1: | ||
+ | + | ||
+ | + } | ||
+ | > ses.means4 <- sqrt(var(means4)) | ||
+ | > ses.means25 <- sqrt(var(means25)) | ||
+ | > ses.means100 <- sqrt(var(means100)) | ||
+ | > ses.means400 <- sqrt(var(means400)) | ||
+ | > ses.means900 <- sqrt(var(means900)) | ||
+ | > ses.means1600 <- sqrt(var(means1600)) | ||
+ | > ses.means2500 <- sqrt(var(means2500)) | ||
+ | > ses.real <- c(ses.means4, | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | > ses.real | ||
+ | [1] 4.9719142 2.0155741 0.9999527 0.5034433 0.3324414 0.2466634 | ||
+ | [7] 0.1965940 | ||
+ | > ses | ||
+ | [1] 5.0000000 2.0000000 1.0000000 0.5000000 0.3333333 0.2500000 | ||
+ | [7] 0.2000000 | ||
+ | > se.1 <- ses | ||
+ | > se.2 <- 2 * ses | ||
+ | > lower.s2 <- mean(ajstu)-se.2 | ||
+ | > upper.s2 <- mean(ajstu)+se.2 | ||
+ | > data.frame(cbind(sss, | ||
+ | | ||
+ | 1 4 5.0000000 4.9719142 90.00000 110.0000 | ||
+ | 2 25 2.0000000 2.0155741 96.00000 104.0000 | ||
+ | 3 100 1.0000000 0.9999527 98.00000 102.0000 | ||
+ | 4 400 0.5000000 0.5034433 99.00000 101.0000 | ||
+ | 5 900 0.3333333 0.3324414 99.33333 100.6667 | ||
+ | 6 1600 0.2500000 0.2466634 99.50000 100.5000 | ||
+ | 7 2500 0.2000000 0.1965940 99.60000 100.4000 | ||
+ | > | ||
+ | </ | ||
+ | {{: | ||
+ | 문제 . . . . | ||
< | < | ||
# n =1600 일 경우에 | # n =1600 일 경우에 | ||
Line 100: | Line 233: | ||
# 이것을 standard error라고 부른다 | # 이것을 standard error라고 부른다 | ||
# 따라서 | # 따라서 | ||
- | pnorm(100.15, | + | se.1600 <- sqrt(var(ajstu)/ |
+ | pnorm(100.15, | ||
</ | </ | ||
- | {{: | + | |
===== Sampling distribution in proportion in R ===== | ===== Sampling distribution in proportion in R ===== | ||
sampling_distribution_in_r.1710910659.txt.gz · Last modified: 2024/03/20 13:57 by hkimscil