User Tools

Site Tools


sampling_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
sampling_distribution [2016/05/17 15:27] – [CLT] hkimscilsampling_distribution [2025/03/24 08:44] (current) – old revision restored (2016/05/17 15:23) hkimscil
Line 47: Line 47:
   * n = 900인 경우?   * n = 900인 경우?
   * n = 1600인 경우?   * n = 1600인 경우?
-<WRAP clear />+
 ===== CLT ===== ===== CLT =====
-위에서 언급한 가상의 **샘플평균들의 분포**를 구한다면 그 분포곡선은 아래의 성질을 갖게 된다.+위에서 언급한 가상의 샘플평균들의 분포를 구한다면 그 분포곡선은 아래의 성질을 갖게 된다. 
   * $\mu_{\overline{\tiny{X}}} = \mu$   * $\mu_{\overline{\tiny{X}}} = \mu$
   * $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$   * $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
Line 55: Line 56:
 (sampling distribution은 [Central Limit Theorem] 을 이해하기 위해서 꼭 필요한 개념이다.) (sampling distribution은 [Central Limit Theorem] 을 이해하기 위해서 꼭 필요한 개념이다.)
  
-<imgcaption fig05|>{{:sampling_distribution_m70sd1.5.png?192 |}}</imgcaption> $\mu=70$ 이며 $\sigma=15$ 인 모집단의 경우에서 n = 100인 샘플을 뽑는다고 가정을 해보면, +$\mu=70$ 이며 $\sigma=15$ 인 모집단의 경우에서 n = 100인 샘플을 뽑는다고 가정을 해보면, 
  
   * $\mu_{\tiny\overline{X}} = \mu = 70$   * $\mu_{\tiny\overline{X}} = \mu = 70$
   * $\sigma_{\tiny\overline{X}} = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{100}} = 1.5$   * $\sigma_{\tiny\overline{X}} = \frac{\sigma}{\sqrt{n}} = \frac{15}{\sqrt{100}} = 1.5$
  
 +아래는 읽지 마세요. 
 ====== English ====== ====== English ======
 I mentioned in the earlier article that the standard error is actually standard deviation of sampling distribution. I would feel safe when I say standard deviation since I covered the concept already. However, I thought you might feel uneasy about "sampling distribution," which may lead you all to a confusion in understanding standard error concept. If so, the article was not good enough. But, I mention about the concept (sampling distribution) implicitly without providing the definitions. So,  I want to talk more about the concepts of "central tendency,"  "sampling distribution" and "standard error." I mentioned in the earlier article that the standard error is actually standard deviation of sampling distribution. I would feel safe when I say standard deviation since I covered the concept already. However, I thought you might feel uneasy about "sampling distribution," which may lead you all to a confusion in understanding standard error concept. If so, the article was not good enough. But, I mention about the concept (sampling distribution) implicitly without providing the definitions. So,  I want to talk more about the concepts of "central tendency,"  "sampling distribution" and "standard error."
sampling_distribution.1463468277.txt.gz · Last modified: 2016/05/17 15:27 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki