repeated_measures_anova
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revision | |||
repeated_measures_anova [2020/06/11 15:18] – [demo 3] hkimscil | repeated_measures_anova [2022/05/10 10:29] (current) – removed hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | See also, [[ANOVA]], [[: | ||
- | ====== Repeated Measure ANOVA ====== | ||
- | Introduction | ||
- | * one-way ANOVA for // | ||
- | * extension of the dependent t-test (one group t-test, repeated measure t-test) | ||
- | * also, it is called " | ||
- | * the simplest one is __one-way repeated measures ANOVA__ | ||
- | * which requires one independent and one dependent variable | ||
- | * the independent variable is categorical (either nominal or ordinal) | ||
- | * the dependent variable is continuous (interval or ratio) | ||
- | |||
- | Test Circumstances | ||
- | * one subject with repeated measures across a time period (differences of mean scores across three or more time periods) | ||
- | * participants being tested with headache drugs such as | ||
- | * group A, B, C, placebo | ||
- | * across the time periods j, k, l, m | ||
- | * testing the effect of a three-month exercise training program on blood sugar level | ||
- | * measure blood sugar level at 3 different points (pre-exercise, | ||
- | * one subject with repeated measures in different situation (treatments; | ||
- | * e.g., participant (n=30) using and evaluating three web site UI (naver, daum, and google) | ||
- | * and rate its usefulness, usability and ease of use | ||
- | * data should look as follows: | ||
- | |||
- | ^ ^ pre-excerise \\ "sugar level" | ||
- | | a | 250 | 220 | 150 | | ||
- | | b | 300 | 170 | 120 | | ||
- | | c | 150 | 120 | 120 | | ||
- | | d | 230 | 170 | 160 | | ||
- | | e | 260 | 250 | 250 | | ||
- | | | level 1 | level 2 | level 3 | | ||
- | |||
- | Levels = related groups of the independent variable " | ||
- | |||
- | ^ ^ treatment \\ condition \\ " | ||
- | | a | 70 | 60 | 80 | | ||
- | | b | 50 | 70 | 50 | | ||
- | | c | 40 | 50 | 60 | | ||
- | | d | 30 | 40 | 60 | | ||
- | | e | 60 | 50 | 40 | | ||
- | | | level 1 | level 2 | level 3 | | ||
- | |||
- | in general, the data should look | ||
- | ^ ^ time/ | ||
- | | | T1 | T2 | T3 | | ||
- | | s1 | s1 | s1 | s1 | | ||
- | | s2 | s2 | s2 | s2 | | ||
- | | s3 | s3 | s3 | s3 | | ||
- | | s4 | s4 | s4 | s4 | | ||
- | | s5 | s5 | s5 | s5 | | ||
- | | .. | .. | .. | .. | | ||
- | | sn | sn | sn | sn | | ||
- | |||
- | You should discern the above from normal ANOVA situation. | ||
- | |||
- | ^ ^ group ^ treatment | ||
- | | a | 1 | 70 | | ||
- | | b | 1 | 50 | | ||
- | | c | 1 | 40 | | ||
- | | d | 1 | 30 | | ||
- | | e | 1 | 60 | | ||
- | | f | 2 | 60 | | ||
- | | g | 2 | 70 | | ||
- | | h | 2 | 50 | | ||
- | | i | 2 | 40 | | ||
- | | j | 2 | 50 | | ||
- | | k | 3 | 80 | | ||
- | | l | 3 | 50 | | ||
- | | m | 3 | 60 | | ||
- | | n | 3 | 60 | | ||
- | | o | 3 | 40 | | ||
- | |||
- | LOGICS | ||
- | * $\text{independent ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \frac{MS_{between}}{MS_{error}}$ | ||
- | |||
- | * $\text{rep measures ANOVA: } F = \displaystyle \frac{MS_{between}}{MS_{within}} = \displaystyle \frac{MS_{conditions}}{MS_{error}}$ | ||
- | |||
- | 주> | ||
- | * " | ||
- | |||
- | -- Picture about here -- | ||
- | |||
- | * but, $\text{SS}_\text{{within}}$ can be partitioned as | ||
- | * $\text{SS}_{\text{ subjects}}$ and $\text{SS}_{\text{ error}}$ | ||
- | * Among the two, we can exclude the first from SS< | ||
- | * and solely use the latter as SS< | ||
- | * This is to say: | ||
- | * in $\text{independent ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{error}} $ | ||
- | * in $\text{rep measures ANOVA: } \text{SS}_\text{{within}} = \text{SS}_{\text{subjects}} + \text{SS}_{\text{error}}$ | ||
- | * This means that the term SS< | ||
- | * But, with this SS< | ||
- | |||
- | ^ subjects | ||
- | | 1 | 45 | 50 | 55 | **50** | ||
- | | 2 | 42 | 42 | 45 | **43** | ||
- | | 3 | 36 | 41 | 43 | **40** | ||
- | | 4 | 39 | 35 | 40 | **38** | ||
- | | 5 | 51 | 55 | 59 | **55** | ||
- | | 6 | 44 | 49 | 56 | **49.7** | ||
- | | **Monthly mean** | ||
- | | **Grand mean: 45.9** | ||
- | |||
- | We do this (and the below example) with an excel {{: | ||
- | We also require {{: | ||
- | |||
- | ^ Headache Analysis | ||
- | | | base | ||
- | | ser | w1 | w2 | w3 | w4 | w5 | $\overline{X}_{part}$ \\ = average \\ per case \\ (subject, \\ participant) | ||
- | | 1 | 21 | 22 | 8 | 6 | 6 | 12.6 | | ||
- | | 2 | 20 | 19 | 10 | 4 | 9 | 12.4 | | ||
- | | 3 | 7 | 5 | 5 | 4 | 5 | 5.2 | | ||
- | | 4 | 25 | 30 | 13 | 12 | 4 | 16.8 | | ||
- | | 5 | 30 | 33 | 10 | 8 | 6 | 17.4 | | ||
- | | 6 | 19 | 27 | 8 | 7 | 4 | 13 | | ||
- | | 7 | 26 | 16 | 5 | 2 | 5 | 10.8 | | ||
- | | 8 | 13 | 4 | 8 | 1 | 5 | 6.2 | | ||
- | | 9 | 26 | 24 | 14 | 8 | 17 | 17.8 | | ||
- | | average \\ per week | 20.78 | 20.00 | 9.00 | 5.78 | 6.78 | $\overline{X}$ = 12.47 | | ||
- | |||
- | ^ Stats ^^ | ||
- | | Mean Total | 12.47 | | ||
- | | $\Sigma{X_i}$ | 561 | | ||
- | | $\Sigma{{X_i}^2}$ | 10483 | | ||
- | | # of week | 5 | | ||
- | | # of case (n) | 9 | | ||
- | |||
- | SS< | ||
- | SS< | ||
- | SS< | ||
- | SS< | ||
- | = SS< | ||
- | = SS< | ||
- | = 721.1 \\ | ||
- | \\ | ||
- | df< | ||
- | df< | ||
- | df< | ||
- | df< | ||
- | df< | ||
- | |||
- | ====== ie ====== | ||
- | ^ 시각적 인지점수 | ||
- | |참가자 | No visual distraction | Visual distraction | Sound Distraction | | ||
- | | A | 47 | 22 | 41 | | ||
- | | B | 57 | 31 | 52 | | ||
- | | C | 38 | 18 | 40 | | ||
- | | D | 45 | 32 | 43 | | ||
- | ====== in r ====== | ||
- | ===== demo1 ===== | ||
- | |||
- | [[https:// | ||
- | <WRAP box info> | ||
- | data files in e.gs: | ||
- | {{: | ||
- | {{: | ||
- | {{: | ||
- | {{: | ||
- | {{: | ||
- | </ | ||
- | |||
- | < | ||
- | demo1 <- read.csv(" | ||
- | demo1 | ||
- | str(demo1) ## 모든 변인이 int이므로 (숫자) factor로 바꿔야 한다 | ||
- | |||
- | ## Convert variables to factor | ||
- | demo1 <- within(demo1, | ||
- | group <- factor(group) | ||
- | time <- factor(time) | ||
- | id <- factor(id) | ||
- | }) ## 이제 pulse만 제외하고 모두 factor로 변환된 데이터 | ||
- | |||
- | str(demo1) | ||
- | </ | ||
- | |||
- | demo1 data는 아래와 같다. | ||
- | < | ||
- | id group pulse time | ||
- | 1 1 10 1 | ||
- | 1 1 10 2 | ||
- | 1 1 10 3 | ||
- | 2 1 10 1 | ||
- | 2 1 10 2 | ||
- | 2 1 10 3 | ||
- | 3 1 10 1 | ||
- | 3 1 10 2 | ||
- | 3 1 10 3 | ||
- | 4 1 10 1 | ||
- | 4 1 10 2 | ||
- | 4 1 10 3 | ||
- | 5 2 15 1 | ||
- | 5 2 15 2 | ||
- | 5 2 15 3 | ||
- | 6 2 15 1 | ||
- | 6 2 15 2 | ||
- | 6 2 15 3 | ||
- | 7 2 16 1 | ||
- | 7 2 15 2 | ||
- | 7 2 15 3 | ||
- | 8 2 15 1 | ||
- | 8 2 15 2 | ||
- | 8 2 15 3 | ||
- | </ | ||
- | 이를 정리해보면 | ||
- | |||
- | || || time |||||||| | ||
- | || || t1 || t2 || t3 || mean \\ of the \\ same person' | ||
- | || 1 || 10 || 10 || 10 || 10 || | ||
- | || 2 || 10 || 10 || 10 || 10 || | ||
- | || 3 || 10 || 10 || 10 || 10 || | ||
- | || 4 || 10 || 10 || 10 || 10 || | ||
- | || 5 || 15 || 15 || 15 || 15 || | ||
- | || 6 || 15 || 15 || 15 || 15 || | ||
- | || 7 || 16 || 15 || 15 || 15.333 | ||
- | || 8 || 15 || 15 || 15 || 15 || | ||
- | || mean \\ across \\ the time || 12.625 | ||
- | |||
- | |||
- | < | ||
- | demo1.within.only.aov <- aov(pulse ~ time + Error(id), data = demo1) | ||
- | summary(demo1.within.only.aov) | ||
- | </ | ||
- | |||
- | < | ||
- | > demo1.within.only.aov <- aov(pulse ~ time + Error(id), data = demo1) | ||
- | > summary(demo1.within.only.aov) | ||
- | |||
- | Error: id | ||
- | Df Sum Sq Mean Sq F value Pr(>F) | ||
- | Residuals | ||
- | |||
- | Error: Within | ||
- | Df Sum Sq Mean Sq F value Pr(>F) | ||
- | time 2 0.0833 0.04167 | ||
- | Residuals 14 0.5833 0.04167 | ||
- | > | ||
- | </ | ||
- | |||
- | < | ||
- | demo1 <- read.csv(" | ||
- | demo1 | ||
- | str(demo1) ## 모든 변인이 int이므로 (숫자) factor로 바꿔야 한다 | ||
- | |||
- | ## Convert variables to factor | ||
- | demo1 <- within(demo1, | ||
- | group <- factor(group) | ||
- | time <- factor(time) | ||
- | id <- factor(id) | ||
- | }) ## 이제 pulse만 제외하고 모두 factor로 변환된 데이터 | ||
- | |||
- | str(demo1) | ||
- | |||
- | par(cex = .6) | ||
- | |||
- | with(demo1, interaction.plot(time, | ||
- | ylim = c(5, 20), lty= c(1, 12), lwd = 3, | ||
- | ylab = "mean of pulse", | ||
- | |||
- | demo1.aov <- aov(pulse ~ group * time + Error(id), data = demo1) | ||
- | summary(demo1.aov) | ||
- | </ | ||
- | |||
- | < | ||
- | > summary(demo1.aov) | ||
- | |||
- | Error: id | ||
- | Df Sum Sq Mean Sq F value Pr(> | ||
- | group 1 155.04 | ||
- | Residuals | ||
- | --- | ||
- | Signif. codes: | ||
- | |||
- | Error: Within | ||
- | Df Sum Sq Mean Sq F value Pr(>F) | ||
- | time 2 0.0833 0.04167 | ||
- | group: | ||
- | Residuals | ||
- | |||
- | </ | ||
- | {{: | ||
- | |||
- | ===== demo2 ===== | ||
- | < | ||
- | demo2 <- read.csv(" | ||
- | ## Convert variables to factor | ||
- | demo2 <- within(demo2, | ||
- | group <- factor(group) | ||
- | time <- factor(time) | ||
- | id <- factor(id) | ||
- | }) | ||
- | demo2 | ||
- | |||
- | with(demo2, interaction.plot(time, | ||
- | ylim = c(10, 40), lty = c(1, 12), lwd = 3, | ||
- | ylab = "mean of pulse", | ||
- | |||
- | demo2.aov <- aov(pulse ~ group * time + Error(id), data = demo2) | ||
- | summary(demo2.aov) | ||
- | </ | ||
- | |||
- | {{: | ||
- | |||
- | < | ||
- | > demo2 <- read.csv(" | ||
- | > ## Convert variables to factor | ||
- | > demo2 <- within(demo2, | ||
- | + group <- factor(group) | ||
- | + time <- factor(time) | ||
- | + id <- factor(id) | ||
- | + }) | ||
- | |||
- | > demo2 | ||
- | id group pulse time | ||
- | 1 | ||
- | 2 | ||
- | 3 | ||
- | 4 | ||
- | 5 | ||
- | 6 | ||
- | 7 | ||
- | 8 | ||
- | 9 | ||
- | 10 4 | ||
- | 11 4 | ||
- | 12 4 | ||
- | 13 5 | ||
- | 14 5 | ||
- | 15 5 | ||
- | 16 6 | ||
- | 17 6 | ||
- | 18 6 | ||
- | 19 7 | ||
- | 20 7 | ||
- | 21 7 | ||
- | 22 8 | ||
- | 23 8 | ||
- | 24 8 | ||
- | > | ||
- | > with(demo2, interaction.plot(time, | ||
- | + ylim = c(10, 40), lty = c(1, 12), lwd = 3, | ||
- | + ylab = "mean of pulse", | ||
- | > | ||
- | > demo2.aov <- aov(pulse ~ group * time + Error(id), data = demo2) | ||
- | > summary(demo2.aov) | ||
- | |||
- | Error: id | ||
- | Df Sum Sq Mean Sq F value Pr(>F) | ||
- | group 1 15.04 | ||
- | Residuals | ||
- | |||
- | Error: Within | ||
- | Df Sum Sq Mean Sq F value | ||
- | time 2 978.2 | ||
- | group: | ||
- | Residuals | ||
- | --- | ||
- | Signif. codes: | ||
- | > | ||
- | </ | ||
- | ===== demo 3 ===== | ||
- | < | ||
- | demo3 <- read.csv(" | ||
- | ## Convert variables to factor | ||
- | demo3 <- within(demo3, | ||
- | group <- factor(group) | ||
- | time <- factor(time) | ||
- | id <- factor(id) | ||
- | }) | ||
- | |||
- | with(demo3, interaction.plot(time, | ||
- | ylim = c(10, 60), lty = c(1, 12), lwd = 3, | ||
- | ylab = "mean of pulse", | ||
- | |||
- | demo3.aov <- aov(pulse ~ group * time + Error(id), data = demo3) | ||
- | summary(demo3.aov) | ||
- | </ | ||
- | |||
- | {{: | ||
- | |||
- | < | ||
- | > demo3 <- read.csv(" | ||
- | > ## Convert variables to factor | ||
- | > demo3 <- within(demo3, | ||
- | + group <- factor(group) | ||
- | + time <- factor(time) | ||
- | + id <- factor(id) | ||
- | + }) | ||
- | > | ||
- | > with(demo3, interaction.plot(time, | ||
- | + ylim = c(10, 60), lty = c(1, 12), lwd = 3, | ||
- | + ylab = "mean of pulse", | ||
- | > | ||
- | > demo3.aov <- aov(pulse ~ group * time + Error(id), data = demo3) | ||
- | > summary(demo3.aov) | ||
- | |||
- | Error: id | ||
- | Df Sum Sq Mean Sq F value Pr(> | ||
- | group 1 2035.0 | ||
- | Residuals | ||
- | --- | ||
- | Signif. codes: | ||
- | |||
- | Error: Within | ||
- | Df Sum Sq Mean Sq F value | ||
- | time 2 2830.3 | ||
- | group: | ||
- | Residuals | ||
- | --- | ||
- | Signif. codes: | ||
- | > | ||
- | > | ||
- | |||
- | </ | ||
- | ====== reference ====== | ||
- | * [[http:// | ||
- | * {{: | ||
- | * http:// | ||
- | * https:// | ||
- | |||
- | * http:// | ||
repeated_measures_anova.1591856338.txt.gz · Last modified: 2020/06/11 15:18 by hkimscil