User Tools

Site Tools


r:repeated_measure_anova

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
r:repeated_measure_anova [2024/05/08 08:17] hkimscilr:repeated_measure_anova [2024/05/08 08:23] (current) – [E.g. 2] hkimscil
Line 1: Line 1:
 ====== E.g. 1 ====== ====== E.g. 1 ======
 +{{r:rep.meas.anova.csv}}
 <code> <code>
 ################################################### ###################################################
Line 44: Line 44:
  
 <code> <code>
-> # Data preparation 
-> # Wide format 
-> # install.packages("datarium") 
-> # library(datarium) 
- 
-> data("selfesteem", package = "datarium") 
-> head(selfesteem, 3) 
-# A tibble: 3 × 4 
-     id    t1    t2    t3 
-  <int> <dbl> <dbl> <dbl> 
-1      4.01  5.18  7.11 
-2      2.56  6.91  6.31 
-3      3.24  4.44  9.78 
- 
-> # Gather columns t1, t2 and t3 into long format 
-> # Convert id and time into factor variables 
- 
-> # for %>% function, dplyr packages needed 
-> # install.packages("dplyr") 
-> # library(dplyr) 
- 
-> # for convert_as_factor function, rstatix needed 
-> # install.packages("rstatix") 
-> # library(rstatix) 
- 
-> selfesteem <- selfesteem %> 
-+   gather(key = "time", value = "score", t1, t2, t3) %> 
-+   convert_as_factor(id, time) 
-> head(selfesteem, 3) 
-# A tibble: 3 × 3 
-  id    time  score 
-  <fct> <fct> <dbl> 
-1 1     t1     4.01 
-2 2     t1     2.56 
-3 3     t1     3.24 
- 
-> # get_summary_stats(group_by(selfesteem, time),  
-> # score, type = "mean_sd") 
-> # the above is the same as the below 
-> selfesteem %>% 
-+   group_by(time) %>% 
-+   get_summary_stats(score, type = "mean_sd") 
-# A tibble: 3 × 5 
-  time  variable      mean    sd 
-  <fct> <fct>    <dbl> <dbl> <dbl> 
-1 t1    score       10  3.14 0.552 
-2 t2    score       10  4.93 0.863 
-3 t3    score       10  7.64 1.14  
- 
- 
-> res.aov <- anova_test( 
-+   data = selfesteem,  
-+   dv = score,  
-+   wid = id,  
-+   within = time) 
-> get_anova_table(res.aov) 
-ANOVA Table (type III tests) 
- 
-  Effect DFn DFd      F        p p<.05   ges 
-1   time    18 55.469 2.01e-08     * 0.829 
- 
-> # ges = generalized effect size 
-> # F 
-> # (2,18) 
- 
 > ################################################### > ###################################################
 > ################################################### > ###################################################
Line 185: Line 120:
 </code> </code>
 ====== E.g. 2 ====== ====== E.g. 2 ======
 +{{:r:rep.meas.anova.eg.movie.review.csv}}
 <code> <code>
 # the second # the second
Line 197: Line 133:
 #view data #view data
 movrev movrev
-write.csv(movrev, file="rep.meas.anova.mov.rev.csv")+write.csv(movrev, file="rep.meas.anova.eg.movie.review.csv")
  
 movrev$movie <- factor(movrev$movie) movrev$movie <- factor(movrev$movie)
Line 221: Line 157:
 </code> </code>
  
 +
 +<code>
 +> # the second
 +> movrev <- data.frame(reviewer=rep(1:5, each=3),
 ++                  movie=rep(1:3, times=5),
 ++                  score=c(88, 84, 92,
 ++                             76, 78, 90,
 ++                             78, 94, 95,
 ++                             80, 83, 88, 
 ++                             82, 90, 99))
 +
 +> #view data
 +> movrev
 +   reviewer movie score
 +1                88
 +2                84
 +3                92
 +4                76
 +5                78
 +6                90
 +7                78
 +8                94
 +9                95
 +10        4        80
 +11        4        83
 +12        4        88
 +13        5        82
 +14        5        90
 +15        5        99
 +> write.csv(movrev, file="rep.meas.anova.eg.movie.review.csv")
 +
 +> movrev$movie <- factor(movrev$movie)
 +> movrev$reviewer <- factor(movrev$reviewer)
 +
 +> # Error(reviewer) = reviewer error should be isolated
 +> # The above is the same as Error(reviewer/movie)
 +> m.aov <- aov(score ~ movie 
 ++              + Error(reviewer), 
 ++              data = movrev)
 +> #view model summary
 +> summary(m.aov)
 +
 +Error: reviewer
 +          Df Sum Sq Mean Sq F value Pr(>F)
 +Residuals  4  173.7   43.43               
 +
 +Error: Within
 +          Df Sum Sq Mean Sq F value  Pr(>F)   
 +movie      2  363.3  181.67   10.19 0.00632 **
 +Residuals  8  142.7   17.83                   
 +---
 +Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
 +
 +> # pairwise.t.test(movrev$score, movrev$movie, paired = T, p.adjust.method = "bonf")
 +> attach(movrev)
 +The following objects are masked from movrev (pos = 5):
 +
 +    movie, reviewer, score
 +
 +> pairwise.t.test(score, movie, paired = T, p.adjust.method = "bonf")
 +
 + Pairwise comparisons using paired t tests 
 +
 +data:  score and movie 
 +
 +  1        
 +2 0.628 -    
 +3 0.029 0.060
 +
 +P value adjustment method: bonferroni 
 +> # or
 +> with(movrev, 
 ++      pairwise.t.test(score, movie, 
 ++                      paired = T, 
 ++                      p.adjust.method = "bonf"))
 +
 + Pairwise comparisons using paired t tests 
 +
 +data:  score and movie 
 +
 +  1        
 +2 0.628 -    
 +3 0.029 0.060
 +
 +P value adjustment method: bonferroni 
 +
 +</code>
r/repeated_measure_anova.1715123873.txt.gz · Last modified: 2024/05/08 08:17 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki