r:path_analysis
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
r:path_analysis [2024/10/30 12:27] – hkimscil | r:path_analysis [2024/11/04 10:28] (current) – [Introduction] hkimscil | ||
---|---|---|---|
Line 16: | Line 16: | ||
* The number of unique (non-redundent) source of information | * The number of unique (non-redundent) source of information | ||
* $p(p+1)/2$ | * $p(p+1)/2$ | ||
- | | + | |
- | * Just-identified (df = 0) | + | * Just-identified (df = 0) |
- | * Model can be estimated, but cannot be assessed | + | * Model can be estimated, but cannot be assessed |
- | * Over-identified (df > 0) | + | * Over-identified (df > 0) |
- | * Model can be estimated and assessed | + | * Model can be estimated and assessed |
- | * Under-identified (df < 0) | + | * Under-identified (df < 0) |
- | * Model cannot be either estimated or assessed | + | * Model cannot be either estimated or assessed |
* Exogenous and | * Exogenous and | ||
Line 555: | Line 555: | ||
===== Lavaan in R: explanation ===== | ===== Lavaan in R: explanation ===== | ||
- | |||
{{youtube> | {{youtube> | ||
Path analysis in R with Lavaan (introduction) | Path analysis in R with Lavaan (introduction) | ||
Line 660: | Line 659: | ||
* Note: Modification indices represent the expected decrease in model chi-square after freeing a given parameter (Schumacker & Lomax, 2004). The EPC is an estimate of the model parameter itself. A MI value of 3.84 or greater may be considered " | * Note: Modification indices represent the expected decrease in model chi-square after freeing a given parameter (Schumacker & Lomax, 2004). The EPC is an estimate of the model parameter itself. A MI value of 3.84 or greater may be considered " | ||
- | ----------------------------- | + | output |
- | * Specification of model using auto.var argument... | + | |
- | < | + | |
- | # model specification | + | |
- | + | ||
- | model< | + | |
- | # equation where interest is predicted by ses & mastery and | + | |
- | # performance goals | + | |
- | interest ~ mastery + perfgoal + ses | + | |
- | + | ||
- | # equation where achieve is predicted by interest and anxiety | + | |
- | achieve~anxiety+interest+mastery | + | |
- | + | ||
- | #equation where anxiety is predicted by mastery and performance goals | + | |
- | anxiety~perfgoal+mastery | + | |
- | + | ||
- | # estimtating the variances of the exogenous variables (ses, mastery, | + | |
- | mastery~~mastery | + | |
- | perfgoal~~perfgoal | + | |
- | ses~~ses | + | |
- | + | ||
- | # estimtating the covariances of the exogenous variables (ses, mastery, | + | |
- | mastery~~perfgoal+ses | + | |
- | perfgoal~~ses | + | |
- | + | ||
- | # The auto.var argument when fitting the model can be used so that | + | |
- | # you do not have to directly request estimation of residual variances | + | |
- | + | ||
- | # Estimating the covariance of residuals for interest and anxiety | + | |
- | interest~~anxiety' | + | |
- | + | ||
- | fit< | + | |
- | summary(fit, | + | |
- | </ | + | |
< | < | ||
- | > ###################################################### | + | > # install.packages(" |
- | > ## data file: PlannedBehavior.csv | + | |
- | > ###################################################### | + | |
- | > ###################################################### | + | |
- | > install.packages(" | + | |
- | ‘C:/ | + | |
- | (왜냐하면 ‘lib’가 지정되지 않았기 때문입니다) | + | |
- | URL ' | + | |
- | Content type ' | + | |
- | downloaded 1.1 MB | + | |
- | + | ||
- | 패키지 ‘readr’를 성공적으로 압축해제하였고 MD5 sums 이 확인되었습니다 | + | |
- | + | ||
- | 다운로드된 바이너리 패키지들은 다음의 위치에 있습니다 | + | |
- | C: | + | |
- | > library(readr) | + | |
- | 경고메시지(들): | + | |
- | 패키지 ‘readr’는 R 버전 4.3.3에서 작성되었습니다 | + | |
- | > df <- read.csv(" | + | |
- | > head(df) | + | |
- | attitude norms control intention behavior | + | |
- | 1 | + | |
- | 2 | + | |
- | 3 | + | |
- | 4 | + | |
- | 5 | + | |
- | 6 | + | |
- | > str(df) | + | |
- | ' | + | |
- | $ attitude : num 2.31 4.66 3.85 4.24 2.91 2.99 3.96 3.01 4.77 3.67 ... | + | |
- | $ norms : num 2.31 4.01 3.56 2.25 3.31 2.51 4.65 2.98 3.09 3.63 ... | + | |
- | $ control | + | |
- | $ intention: num 2.5 3.99 4.35 1.51 1.45 2.59 4.08 2.58 4.87 3.09 ... | + | |
- | $ behavior : num 2.62 3.64 3.83 2.25 2 2.2 4.41 4.15 4.35 3.95 ... | + | |
- | > # specifying path analysis model | + | |
- | > # by using lavann package | + | |
- | > install.packages(" | + | |
- | ‘C:/ | + | |
- | (왜냐하면 ‘lib’가 지정되지 않았기 때문입니다) | + | |
- | Warning in install.packages : | + | |
- | package ‘lavann’ is not available for this version of R | + | |
- | + | ||
- | A version of this package for your version of R might be available elsewhere, | + | |
- | see the ideas at | + | |
- | https:// | + | |
- | > # specifying path analysis model | + | |
- | > # by using lavann package | + | |
- | > # install.packages(" | + | |
- | > library(lavaan) | + | |
- | This is lavaan 0.6-16 | + | |
- | lavaan is FREE software! Please report any bugs. | + | |
- | > specmod <- " | + | |
- | + # path c | + | |
- | + # identifying path c (prime) by putting c* | + | |
- | + | + | |
- | + | + | |
- | + # path a | + | |
- | + | + | |
- | + | + | |
- | + # path b | + | |
- | + | + | |
- | + | + | |
- | + # indirect effect (a*b): Sobel test (Delta Method) | + | |
- | + # 간접효과 a path x b path 를 구해서 얻음 | + | |
- | + # sobel test 라 부름 | + | |
- | + ab := a*b | + | |
- | + " | + | |
- | > # Fit/ | + | |
- | > fitmod <- sem(specmod, | + | |
- | > # summarize the model | + | |
- | > summary(fitmod, | + | |
- | lavaan 0.6.16 ended normally after 1 iteration | + | |
- | + | ||
- | Estimator | + | |
- | Optimization method | + | |
- | Number of model parameters | + | |
- | + | ||
- | Number of observations | + | |
- | + | ||
- | Model Test User Model: | + | |
- | + | ||
- | Test statistic | + | |
- | Degrees of freedom | + | |
- | + | ||
- | Model Test Baseline Model: | + | |
- | + | ||
- | Test statistic | + | |
- | Degrees of freedom | + | |
- | P-value | + | |
- | + | ||
- | User Model versus Baseline Model: | + | |
- | + | ||
- | Comparative Fit Index (CFI) 1.000 | + | |
- | Tucker-Lewis Index (TLI) | + | |
- | + | ||
- | Loglikelihood and Information Criteria: | + | |
- | + | ||
- | Loglikelihood user model (H0) | + | |
- | Loglikelihood unrestricted model (H1) | + | |
- | + | ||
- | Akaike (AIC) | + | |
- | Bayesian (BIC) | + | |
- | Sample-size adjusted Bayesian (SABIC) | + | |
- | + | ||
- | Root Mean Square Error of Approximation: | + | |
- | + | ||
- | RMSEA 0.000 | + | |
- | 90 Percent confidence interval - lower | + | |
- | 90 Percent confidence interval - upper | + | |
- | P-value H_0: RMSEA <= 0.050 NA | + | |
- | P-value H_0: RMSEA >= 0.080 NA | + | |
- | + | ||
- | Standardized Root Mean Square Residual: | + | |
- | + | ||
- | SRMR | + | |
- | + | ||
- | Parameter Estimates: | + | |
- | + | ||
- | Standard errors | + | |
- | Information | + | |
- | Information saturated (h1) model Structured | + | |
- | + | ||
- | Regressions: | + | |
- | | + | |
- | behavior ~ | + | |
- | attitude | + | |
- | intention ~ | + | |
- | attitude | + | |
- | behavior ~ | + | |
- | intention | + | |
- | + | ||
- | Variances: | + | |
- | | + | |
- | | + | |
- | | + | |
- | + | ||
- | R-Square: | + | |
- | | + | |
- | behavior | + | |
- | intention | + | |
- | + | ||
- | Defined Parameters: | + | |
- | | + | |
- | ab 0.212 0.044 4.778 0.000 | + | |
- | + | ||
- | > ########################################## | + | |
- | > # boot strapping instead of sobel test | + | |
- | > ########################################## | + | |
- | > set.seed(101) | + | |
- | > fitmod2 <- sem(specmod, | + | |
- | + se=" | + | |
- | + bootstrap=100) | + | |
- | > summary(fitmod2, | + | |
- | lavaan 0.6.16 ended normally after 1 iteration | + | |
- | + | ||
- | Estimator | + | |
- | Optimization method | + | |
- | Number of model parameters | + | |
- | + | ||
- | Number of observations | + | |
- | + | ||
- | Model Test User Model: | + | |
- | + | ||
- | Test statistic | + | |
- | Degrees of freedom | + | |
- | + | ||
- | Model Test Baseline Model: | + | |
- | + | ||
- | Test statistic | + | |
- | Degrees of freedom | + | |
- | P-value | + | |
- | + | ||
- | User Model versus Baseline Model: | + | |
- | + | ||
- | Comparative Fit Index (CFI) 1.000 | + | |
- | Tucker-Lewis Index (TLI) | + | |
- | + | ||
- | Loglikelihood and Information Criteria: | + | |
- | + | ||
- | Loglikelihood user model (H0) | + | |
- | Loglikelihood unrestricted model (H1) | + | |
- | + | ||
- | Akaike (AIC) | + | |
- | Bayesian (BIC) | + | |
- | Sample-size adjusted Bayesian (SABIC) | + | |
- | + | ||
- | Root Mean Square Error of Approximation: | + | |
- | + | ||
- | RMSEA 0.000 | + | |
- | 90 Percent confidence interval - lower | + | |
- | 90 Percent confidence interval - upper | + | |
- | P-value H_0: RMSEA <= 0.050 NA | + | |
- | P-value H_0: RMSEA >= 0.080 NA | + | |
- | + | ||
- | Standardized Root Mean Square Residual: | + | |
- | + | ||
- | SRMR | + | |
- | + | ||
- | Parameter Estimates: | + | |
- | + | ||
- | Standard errors | + | |
- | Number of requested bootstrap draws 100 | + | |
- | Number of successful bootstrap draws 100 | + | |
- | + | ||
- | Regressions: | + | |
- | | + | |
- | behavior ~ | + | |
- | attitude | + | |
- | intention ~ | + | |
- | attitude | + | |
- | behavior ~ | + | |
- | intention | + | |
- | + | ||
- | Variances: | + | |
- | | + | |
- | | + | |
- | | + | |
- | + | ||
- | R-Square: | + | |
- | | + | |
- | behavior | + | |
- | intention | + | |
- | + | ||
- | Defined Parameters: | + | |
- | | + | |
- | ab 0.212 0.046 4.639 0.000 | + | |
- | + | ||
- | > parameterEstimates(fitmod2, | + | |
- | + ci=TRUE, level=.95, | + | |
- | + boot.ci.type=" | + | |
- | lhs op rhs label | + | |
- | 1 behavior | + | |
- | 2 intention | + | |
- | 3 behavior | + | |
- | 4 behavior ~~ behavior | + | |
- | 5 intention ~~ intention | + | |
- | 6 attitude ~~ attitude | + | |
- | 7 ab := | + | |
- | > | + | |
- | > | + | |
- | > | + | |
- | > ############################# | + | |
- | > # poking 둘러보기 | + | |
- | > # 모델 = | + | |
- | > # a Intention | + | |
- | > # Attitude | + | |
- | > # | + | |
- | > lm.ba.01 <- lm(behavior~attitude+intention, | + | |
- | > lm.ba.02 <- lm(behavior~intention, | + | |
- | > lm.ba.03 <- lm(intention~attitude, | + | |
- | > lm.ba.04 <- lm(attitude~intention, | + | |
- | > lm.ba.05 <- lm(behavior~attitude, | + | |
- | > | + | |
- | > summary(lm.ba.05) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ attitude, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -1.96792 -0.62906 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | attitude | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.9087 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.01) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ attitude + intention, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -2.01916 -0.57280 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | attitude | + | |
- | intention | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8419 on 196 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > names(lm.ba.03) | + | |
- | [1] " | + | |
- | [5] " | + | |
- | [9] " | + | |
- | > reg.int <- lm.ba.03$fitted.values - mean(df$intention) | + | |
- | > res.int <- summary(lm.ba.03)$residuals | + | |
- | > # just checking | + | |
- | > sum(reg.int^2) + sum(res.int^2) | + | |
- | [1] 167.2277 | + | |
- | > var(df$intention)*(length(df$intention)-1) | + | |
- | [1] 167.2277 | + | |
- | > # the intention part contributed by attitudes | + | |
- | > # is it explaing behavior too? | + | |
- | > lm.ba.021 <- lm(behavior~reg.int, | + | |
- | > summary(lm.ba.021) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ reg.int, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -1.96792 -0.62906 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | reg.int | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.9087 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > int.all <- res.int + reg.int | + | |
- | > lm.temp <- lm(behavior~int.all, | + | |
- | > summary(lm.temp) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ int.all, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -2.03770 -0.55555 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | int.all | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8401 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.02) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ intention, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -2.03770 -0.55555 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | intention | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8401 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.021) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ reg.int, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -1.96792 -0.62906 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | reg.int | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.9087 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.022) | + | |
- | h(simpleError(msg, | + | |
- | 함수 ' | + | |
- | > # the pure intention part excluding | + | |
- | > # what attitude contributes | + | |
- | > lm.ba.022 <- lm(behavior~res.int, | + | |
- | > summary(lm.ba.022) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ res.int, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -1.94981 -0.57202 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | res.int | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8716 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.022) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ res.int, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -1.94981 -0.57202 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | res.int | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8716 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > # intention - behavior part | + | |
- | > summary(lm.ba.02)$r.squared | + | |
- | [1] 0.1982297 | + | |
- | > # K - attitudes 가 intention을 설명해 주는 부분 (regression error) | + | |
- | > summary(lm.ba.021)$r.squared | + | |
- | [1] 0.06197255 | + | |
- | > # J - attitudes 가 설명하지 못하는 부분 (residual error) | + | |
- | > summary(lm.ba.022)$r.squared | + | |
- | [1] 0.1369399 | + | |
- | > # 위에서 intention은 K와 J로 이루어져 있다. 이를 확인하는 것 | + | |
- | > summary(lm.ba.021)$r.squared + summary(lm.ba.022)$r.squared | + | |
- | [1] 0.1989125 | + | |
- | > | + | |
- | > # lm.ba.04 <- lm(attitude~intention, | + | |
- | > res.temp <- lm.ba.04$residuals | + | |
- | > lm.temp <- lm(behavior~res.temp, | + | |
- | > summary(lm.temp) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ res.temp, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -2.11381 -0.61542 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | res.temp | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.9379 on 197 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > summary(lm.ba.01) | + | |
- | + | ||
- | Call: | + | |
- | lm(formula = behavior ~ attitude + intention, data = df) | + | |
- | + | ||
- | Residuals: | + | |
- | | + | |
- | -2.01916 -0.57280 | + | |
- | + | ||
- | Coefficients: | + | |
- | Estimate Std. Error t value Pr(> | + | |
- | (Intercept) | + | |
- | attitude | + | |
- | intention | + | |
- | --- | + | |
- | Signif. codes: | + | |
- | + | ||
- | Residual standard error: 0.8419 on 196 degrees of freedom | + | |
- | Multiple R-squared: | + | |
- | F-statistic: | + | |
- | + | ||
- | > | + | |
- | > | + | |
- | > abc <- summary(lm.ba.01)$r.square | + | |
- | > ab <- summary(lm.ba.02)$r.square | + | |
- | > bc <- summary(lm.ba.05)$r.square | + | |
- | > abc | + | |
- | [1] 0.1989125 | + | |
- | > abbc <- ab + bc | + | |
- | > ab | + | |
- | [1] 0.1982297 | + | |
- | > bc | + | |
- | [1] 0.06197255 | + | |
- | > a <- abc - bc | + | |
- | > abbc <- ab + bc | + | |
- | > abbc | + | |
- | [1] 0.2602023 | + | |
- | > b <- abbc - abc | + | |
- | > b | + | |
- | [1] 0.0612898 | + | |
- | > a | + | |
- | [1] 0.1369399 | + | |
- | > c | + | |
- | function (...) .Primitive(" | + | |
- | > c <- abc - ab | + | |
- | > c | + | |
- | [1] 0.0006827583 | + | |
- | > install.packages(" | + | |
- | 에러: 예상하지 못한 기호(symbol)입니다. in " | + | |
> | > | ||
> # processdata< | > # processdata< | ||
> processdata< | > processdata< | ||
+ header=TRUE, | + header=TRUE, | ||
+ | > | ||
> str(processdata) | > str(processdata) | ||
' | ' | ||
Line 1234: | Line 680: | ||
$ pgoal_MS: int 0 0 1 1 0 1 0 1 0 0 ... | $ pgoal_MS: int 0 0 1 1 0 1 0 1 0 0 ... | ||
> library(lavaan) | > library(lavaan) | ||
+ | > | ||
> # model specification | > # model specification | ||
> model <- ' | > model <- ' | ||
Line 1268: | Line 715: | ||
+ # for interest and anxiety | + # for interest and anxiety | ||
+ | + | ||
+ | > | ||
> fit< | > fit< | ||
> summary(fit, | > summary(fit, | ||
Line 1447: | Line 895: | ||
achieve | achieve | ||
- | > | + | > |
+ | > parameterEstimates(fit) | ||
+ | lhs op rhs est se z pvalue ci.lower ci.upper | ||
+ | 1 interest | ||
+ | 2 interest | ||
+ | 3 interest | ||
+ | 4 | ||
+ | 5 | ||
+ | 6 | ||
+ | 7 | ||
+ | 8 | ||
+ | 9 | ||
+ | 10 perfgoal ~~ perfgoal | ||
+ | 11 ses ~~ ses 0.249 0.030 8.367 0.000 0.191 0.308 | ||
+ | 12 mastery ~~ perfgoal -0.935 0.361 -2.590 | ||
+ | 13 mastery ~~ ses 0.170 0.061 2.805 0.005 0.051 0.288 | ||
+ | 14 perfgoal ~~ ses -0.226 0.128 -1.768 | ||
+ | 15 interest ~~ interest | ||
+ | 16 anxiety ~~ anxiety | ||
+ | 17 achieve ~~ achieve | ||
+ | 18 interest ~~ anxiety | ||
+ | > fitMeasures(fit) | ||
+ | | ||
+ | | ||
+ | | ||
+ | 3.000 | ||
+ | baseline.df | ||
+ | | ||
+ | tli nnfi rfi | ||
+ | 0.300 | ||
+ | nfi pnfi ifi | ||
+ | 0.856 | ||
+ | rni logl | ||
+ | 0.860 | ||
+ | aic | ||
+ | | ||
+ | | ||
+ | | ||
+ | | ||
+ | 0.336 | ||
+ | | ||
+ | 0.050 | ||
+ | rmr rmr_nomean | ||
+ | 0.122 | ||
+ | | ||
+ | 0.074 | ||
+ | crmr_nomean | ||
+ | 0.088 | ||
+ | cn_05 | ||
+ | | ||
+ | | ||
+ | 0.587 | ||
+ | ecvi | ||
+ | 0.466 | ||
+ | > modificationIndices(fit) | ||
+ | lhs op rhs | ||
+ | 19 interest ~~ achieve 25.396 -2.899 | ||
+ | 23 achieve ~~ anxiety | ||
+ | 24 achieve ~~ mastery 22.476 -1.743 | ||
+ | 25 achieve ~~ perfgoal | ||
+ | 26 achieve ~~ ses 20.541 | ||
+ | 27 anxiety ~~ mastery | ||
+ | 28 anxiety ~~ perfgoal | ||
+ | 29 anxiety ~~ ses 0.921 -0.061 | ||
+ | 30 interest | ||
+ | 32 achieve | ||
+ | 33 achieve | ||
+ | 34 anxiety | ||
+ | 35 anxiety | ||
+ | 36 anxiety | ||
+ | 37 mastery | ||
+ | 38 mastery | ||
+ | 39 mastery | ||
+ | 43 perfgoal | ||
+ | 44 perfgoal | ||
+ | 47 ses ~ interest | ||
+ | 48 ses ~ achieve 20.964 | ||
+ | 49 ses ~ anxiety | ||
+ | > | ||
+ | > | ||
</ | </ | ||
+ | |||
+ | ----------------------------- | ||
+ | * Specification of model using auto.var argument... | ||
+ | < | ||
+ | # model specification | ||
+ | |||
+ | model< | ||
+ | # equation where interest is predicted by ses & mastery and | ||
+ | # performance goals | ||
+ | interest ~ mastery + perfgoal + ses | ||
+ | |||
+ | # equation where achieve is predicted by interest and anxiety | ||
+ | achieve~anxiety+interest+mastery | ||
+ | |||
+ | #equation where anxiety is predicted by mastery and performance goals | ||
+ | anxiety~perfgoal+mastery | ||
+ | |||
+ | # estimtating the variances of the exogenous variables (ses, mastery, | ||
+ | mastery~~mastery | ||
+ | perfgoal~~perfgoal | ||
+ | ses~~ses | ||
+ | |||
+ | # estimtating the covariances of the exogenous variables (ses, mastery, | ||
+ | mastery~~perfgoal+ses | ||
+ | perfgoal~~ses | ||
+ | |||
+ | # The auto.var argument when fitting the model can be used so that | ||
+ | # you do not have to directly request estimation of residual variances | ||
+ | |||
+ | # Estimating the covariance of residuals for interest and anxiety | ||
+ | interest~~anxiety' | ||
+ | |||
+ | fit< | ||
+ | summary(fit, | ||
+ | </ | ||
* There are a couple of ways you can obtain path diagrams (although they can be somewhat tricky to implement. | * There are a couple of ways you can obtain path diagrams (although they can be somewhat tricky to implement. |
r/path_analysis.1730258849.txt.gz · Last modified: 2024/10/30 12:27 by hkimscil