r:path_analysis
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| r:path_analysis [2023/11/27 16:57] – [Lavaan in R: explanation] hkimscil | r:path_analysis [2024/11/04 10:28] (current) – [Introduction] hkimscil | ||
|---|---|---|---|
| Line 16: | Line 16: | ||
| * The number of unique (non-redundent) source of information | * The number of unique (non-redundent) source of information | ||
| * $p(p+1)/2$ | * $p(p+1)/2$ | ||
| - | | + | |
| - | * Just-identified (df = 0) | + | * Just-identified (df = 0) |
| - | * Model can be estimated, but cannot be assessed | + | * Model can be estimated, but cannot be assessed |
| - | * Over-identified (df > 0) | + | * Over-identified (df > 0) |
| - | * Model can be estimated and assessed | + | * Model can be estimated and assessed |
| - | * Under-identified (df < 0) | + | * Under-identified (df < 0) |
| - | * Model cannot be either estimated or assessed | + | * Model cannot be either estimated or assessed |
| * Exogenous and | * Exogenous and | ||
| Line 555: | Line 555: | ||
| ===== Lavaan in R: explanation ===== | ===== Lavaan in R: explanation ===== | ||
| - | |||
| {{youtube> | {{youtube> | ||
| Path analysis in R with Lavaan (introduction) | Path analysis in R with Lavaan (introduction) | ||
| Line 659: | Line 658: | ||
| </ | </ | ||
| * Note: Modification indices represent the expected decrease in model chi-square after freeing a given parameter (Schumacker & Lomax, 2004). The EPC is an estimate of the model parameter itself. A MI value of 3.84 or greater may be considered " | * Note: Modification indices represent the expected decrease in model chi-square after freeing a given parameter (Schumacker & Lomax, 2004). The EPC is an estimate of the model parameter itself. A MI value of 3.84 or greater may be considered " | ||
| + | |||
| + | output | ||
| + | |||
| + | < | ||
| + | > # install.packages(" | ||
| + | > | ||
| + | > # processdata< | ||
| + | > processdata< | ||
| + | + header=TRUE, | ||
| + | > | ||
| + | > str(processdata) | ||
| + | ' | ||
| + | $ id : int 1 2 3 4 5 6 7 8 9 10 ... | ||
| + | $ ses : int 1 0 0 1 1 1 0 0 1 1 ... | ||
| + | $ genderid: int 1 0 1 1 1 1 0 0 0 0 ... | ||
| + | $ perfgoal: num 29.5 29.5 30.4 33.5 28.7 ... | ||
| + | $ achieve : num 6.12 1.62 4.5 2.38 5.12 ... | ||
| + | $ mastery : num 5.71 1.43 1.29 2.29 4.57 ... | ||
| + | $ interest: num 6 4 2 4 5.5 4 4 5 4.5 4 ... | ||
| + | $ anxiety : num 1.67 6.33 3.67 3.67 3.67 ... | ||
| + | $ pgoal_MS: int 0 0 1 1 0 1 0 1 0 0 ... | ||
| + | > library(lavaan) | ||
| + | > | ||
| + | > # model specification | ||
| + | > model <- ' | ||
| + | + # equation where interest is predicted by ses | ||
| + | + # & mastery and performance goals | ||
| + | + | ||
| + | + | ||
| + | + # equation where achieve is predicted by | ||
| + | + # interest and anxiety | ||
| + | + | ||
| + | + | ||
| + | + # equation where anxiety is predicted | ||
| + | + # by mastery and performance goals | ||
| + | + | ||
| + | + | ||
| + | + # estimating the variances of | ||
| + | + # the exogenous variables (ses, mastery, | ||
| + | + | ||
| + | + | ||
| + | + ses ~~ ses | ||
| + | + | ||
| + | + # estimtating the covariances of the exogenous | ||
| + | + # variables (ses, mastery, | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | + # estimating the residual variances | ||
| + | + # for endogenous variables (interest, anxiety, achieve) | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | + | ||
| + | + # estimating the covariance of residuals | ||
| + | + # for interest and anxiety | ||
| + | + | ||
| + | > | ||
| + | > fit< | ||
| + | > summary(fit, | ||
| + | lavaan 0.6.16 ended normally after 27 iterations | ||
| + | |||
| + | Estimator | ||
| + | Optimization method | ||
| + | Number of model parameters | ||
| + | |||
| + | Number of observations | ||
| + | |||
| + | Model Test User Model: | ||
| + | | ||
| + | Test statistic | ||
| + | Degrees of freedom | ||
| + | P-value (Chi-square) | ||
| + | |||
| + | Model Test Baseline Model: | ||
| + | |||
| + | Test statistic | ||
| + | Degrees of freedom | ||
| + | P-value | ||
| + | |||
| + | User Model versus Baseline Model: | ||
| + | |||
| + | Comparative Fit Index (CFI) 0.860 | ||
| + | Tucker-Lewis Index (TLI) 0.300 | ||
| + | |||
| + | Loglikelihood and Information Criteria: | ||
| + | |||
| + | Loglikelihood user model (H0) -1391.274 | ||
| + | Loglikelihood unrestricted model (H1) -1376.659 | ||
| + | | ||
| + | Akaike (AIC) 2818.548 | ||
| + | Bayesian (BIC) 2871.498 | ||
| + | Sample-size adjusted Bayesian (SABIC) | ||
| + | |||
| + | Root Mean Square Error of Approximation: | ||
| + | |||
| + | RMSEA 0.250 | ||
| + | 90 Percent confidence interval - lower 0.172 | ||
| + | 90 Percent confidence interval - upper 0.336 | ||
| + | P-value H_0: RMSEA <= 0.050 0.000 | ||
| + | P-value H_0: RMSEA >= 0.080 1.000 | ||
| + | |||
| + | Standardized Root Mean Square Residual: | ||
| + | |||
| + | SRMR 0.074 | ||
| + | |||
| + | Parameter Estimates: | ||
| + | |||
| + | Standard errors | ||
| + | Information | ||
| + | Information saturated (h1) model Structured | ||
| + | |||
| + | Regressions: | ||
| + | | ||
| + | interest ~ | ||
| + | mastery | ||
| + | perfgoal | ||
| + | ses | ||
| + | achieve ~ | ||
| + | anxiety | ||
| + | interest | ||
| + | mastery | ||
| + | anxiety ~ | ||
| + | perfgoal | ||
| + | mastery | ||
| + | |||
| + | Covariances: | ||
| + | | ||
| + | mastery ~~ | ||
| + | perfgoal | ||
| + | ses | ||
| + | perfgoal ~~ | ||
| + | ses -0.226 | ||
| + | | ||
| + | | ||
| + | |||
| + | Variances: | ||
| + | | ||
| + | mastery | ||
| + | perfgoal | ||
| + | ses | ||
| + | | ||
| + | | ||
| + | | ||
| + | |||
| + | > summary(fit, | ||
| + | lavaan 0.6.16 ended normally after 27 iterations | ||
| + | |||
| + | Estimator | ||
| + | Optimization method | ||
| + | Number of model parameters | ||
| + | |||
| + | Number of observations | ||
| + | |||
| + | Model Test User Model: | ||
| + | | ||
| + | Test statistic | ||
| + | Degrees of freedom | ||
| + | P-value (Chi-square) | ||
| + | |||
| + | Model Test Baseline Model: | ||
| + | |||
| + | Test statistic | ||
| + | Degrees of freedom | ||
| + | P-value | ||
| + | |||
| + | User Model versus Baseline Model: | ||
| + | |||
| + | Comparative Fit Index (CFI) 0.860 | ||
| + | Tucker-Lewis Index (TLI) 0.300 | ||
| + | |||
| + | Loglikelihood and Information Criteria: | ||
| + | |||
| + | Loglikelihood user model (H0) -1391.274 | ||
| + | Loglikelihood unrestricted model (H1) -1376.659 | ||
| + | | ||
| + | Akaike (AIC) 2818.548 | ||
| + | Bayesian (BIC) 2871.498 | ||
| + | Sample-size adjusted Bayesian (SABIC) | ||
| + | |||
| + | Root Mean Square Error of Approximation: | ||
| + | |||
| + | RMSEA 0.250 | ||
| + | 90 Percent confidence interval - lower 0.172 | ||
| + | 90 Percent confidence interval - upper 0.336 | ||
| + | P-value H_0: RMSEA <= 0.050 0.000 | ||
| + | P-value H_0: RMSEA >= 0.080 1.000 | ||
| + | |||
| + | Standardized Root Mean Square Residual: | ||
| + | |||
| + | SRMR 0.074 | ||
| + | |||
| + | Parameter Estimates: | ||
| + | |||
| + | Standard errors | ||
| + | Information | ||
| + | Information saturated (h1) model Structured | ||
| + | |||
| + | Regressions: | ||
| + | | ||
| + | interest ~ | ||
| + | mastery | ||
| + | perfgoal | ||
| + | ses | ||
| + | achieve ~ | ||
| + | anxiety | ||
| + | interest | ||
| + | mastery | ||
| + | anxiety ~ | ||
| + | perfgoal | ||
| + | mastery | ||
| + | |||
| + | Covariances: | ||
| + | | ||
| + | mastery ~~ | ||
| + | perfgoal | ||
| + | ses | ||
| + | perfgoal ~~ | ||
| + | ses -0.226 | ||
| + | | ||
| + | | ||
| + | |||
| + | Variances: | ||
| + | | ||
| + | mastery | ||
| + | perfgoal | ||
| + | ses | ||
| + | | ||
| + | | ||
| + | | ||
| + | |||
| + | R-Square: | ||
| + | | ||
| + | interest | ||
| + | anxiety | ||
| + | achieve | ||
| + | |||
| + | > | ||
| + | > parameterEstimates(fit) | ||
| + | lhs op rhs est se z pvalue ci.lower ci.upper | ||
| + | 1 interest | ||
| + | 2 interest | ||
| + | 3 interest | ||
| + | 4 | ||
| + | 5 | ||
| + | 6 | ||
| + | 7 | ||
| + | 8 | ||
| + | 9 | ||
| + | 10 perfgoal ~~ perfgoal | ||
| + | 11 ses ~~ ses 0.249 0.030 8.367 0.000 0.191 0.308 | ||
| + | 12 mastery ~~ perfgoal -0.935 0.361 -2.590 | ||
| + | 13 mastery ~~ ses 0.170 0.061 2.805 0.005 0.051 0.288 | ||
| + | 14 perfgoal ~~ ses -0.226 0.128 -1.768 | ||
| + | 15 interest ~~ interest | ||
| + | 16 anxiety ~~ anxiety | ||
| + | 17 achieve ~~ achieve | ||
| + | 18 interest ~~ anxiety | ||
| + | > fitMeasures(fit) | ||
| + | | ||
| + | | ||
| + | | ||
| + | 3.000 | ||
| + | baseline.df | ||
| + | | ||
| + | tli nnfi | ||
| + | 0.300 | ||
| + | nfi pnfi | ||
| + | 0.856 | ||
| + | rni logl | ||
| + | 0.860 | ||
| + | aic | ||
| + | | ||
| + | | ||
| + | | ||
| + | | ||
| + | 0.336 | ||
| + | | ||
| + | 0.050 | ||
| + | rmr rmr_nomean | ||
| + | 0.122 | ||
| + | | ||
| + | 0.074 | ||
| + | crmr_nomean | ||
| + | 0.088 | ||
| + | cn_05 | ||
| + | | ||
| + | | ||
| + | 0.587 | ||
| + | | ||
| + | 0.466 | ||
| + | > modificationIndices(fit) | ||
| + | lhs op rhs | ||
| + | 19 interest ~~ achieve 25.396 -2.899 | ||
| + | 23 achieve ~~ anxiety | ||
| + | 24 achieve ~~ mastery 22.476 -1.743 | ||
| + | 25 achieve ~~ perfgoal | ||
| + | 26 achieve ~~ ses 20.541 | ||
| + | 27 anxiety ~~ mastery | ||
| + | 28 anxiety ~~ perfgoal | ||
| + | 29 anxiety ~~ ses 0.921 -0.061 | ||
| + | 30 interest | ||
| + | 32 achieve | ||
| + | 33 achieve | ||
| + | 34 anxiety | ||
| + | 35 anxiety | ||
| + | 36 anxiety | ||
| + | 37 mastery | ||
| + | 38 mastery | ||
| + | 39 mastery | ||
| + | 43 perfgoal | ||
| + | 44 perfgoal | ||
| + | 47 ses ~ interest | ||
| + | 48 ses ~ achieve 20.964 | ||
| + | 49 ses ~ anxiety | ||
| + | > | ||
| + | > | ||
| + | </ | ||
| + | |||
| + | |||
| ----------------------------- | ----------------------------- | ||
r/path_analysis.1701071849.txt.gz · Last modified: by hkimscil
