r:neural_network
This is an old revision of the document!
Neural Network
> install.packages("nnet") > library(nnet) > m <- nnet(Species ~ ., data=iris, size=3) # weights: 27 initial value 191.494035 iter 10 value 65.618496 iter 20 value 40.493306 iter 30 value 8.542349 iter 40 value 6.034377 iter 50 value 6.000246 iter 60 value 5.998411 iter 70 value 5.983894 iter 80 value 5.972932 iter 90 value 5.968740 iter 100 value 5.965371 final value 5.965371 stopped after 100 iterations > round(predict(m, newdata=iris),2) setosa versicolor virginica 1 1 0.00 0.00 2 1 0.00 0.00 3 1 0.00 0.00 4 1 0.00 0.00 5 1 0.00 0.00 6 1 0.00 0.00 7 1 0.00 0.00 8 1 0.00 0.00 9 1 0.00 0.00 10 1 0.00 0.00 11 1 0.00 0.00 12 1 0.00 0.00 13 1 0.00 0.00 14 1 0.00 0.00 15 1 0.00 0.00 16 1 0.00 0.00 17 1 0.00 0.00 18 1 0.00 0.00 19 1 0.00 0.00 20 1 0.00 0.00 21 1 0.00 0.00 22 1 0.00 0.00 23 1 0.00 0.00 24 1 0.00 0.00 25 1 0.00 0.00 26 1 0.00 0.00 27 1 0.00 0.00 28 1 0.00 0.00 29 1 0.00 0.00 30 1 0.00 0.00 31 1 0.00 0.00 32 1 0.00 0.00 33 1 0.00 0.00 34 1 0.00 0.00 35 1 0.00 0.00 36 1 0.00 0.00 37 1 0.00 0.00 38 1 0.00 0.00 39 1 0.00 0.00 40 1 0.00 0.00 41 1 0.00 0.00 42 1 0.00 0.00 43 1 0.00 0.00 44 1 0.00 0.00 45 1 0.00 0.00 46 1 0.00 0.00 47 1 0.00 0.00 48 1 0.00 0.00 49 1 0.00 0.00 50 1 0.00 0.00 51 0 1.00 0.00 52 0 1.00 0.00 53 0 1.00 0.00 54 0 1.00 0.00 55 0 1.00 0.00 56 0 1.00 0.00 57 0 1.00 0.00 58 0 1.00 0.00 59 0 1.00 0.00 60 0 1.00 0.00 61 0 1.00 0.00 62 0 1.00 0.00 63 0 1.00 0.00 64 0 1.00 0.00 65 0 1.00 0.00 66 0 1.00 0.00 67 0 1.00 0.00 68 0 1.00 0.00 69 0 0.95 0.05 70 0 1.00 0.00 71 0 0.59 0.41 72 0 1.00 0.00 73 0 0.77 0.23 74 0 1.00 0.00 75 0 1.00 0.00 76 0 1.00 0.00 77 0 1.00 0.00 78 0 0.73 0.27 79 0 1.00 0.00 80 0 1.00 0.00 81 0 1.00 0.00 82 0 1.00 0.00 83 0 1.00 0.00 84 0 0.12 0.88 85 0 1.00 0.00 86 0 1.00 0.00 87 0 1.00 0.00 88 0 1.00 0.00 89 0 1.00 0.00 90 0 1.00 0.00 91 0 1.00 0.00 92 0 1.00 0.00 93 0 1.00 0.00 94 0 1.00 0.00 95 0 1.00 0.00 96 0 1.00 0.00 97 0 1.00 0.00 98 0 1.00 0.00 99 0 1.00 0.00 100 0 1.00 0.00 101 0 0.00 1.00 102 0 0.00 1.00 103 0 0.00 1.00 104 0 0.00 1.00 105 0 0.00 1.00 106 0 0.00 1.00 107 0 0.11 0.89 108 0 0.00 1.00 109 0 0.00 1.00 110 0 0.00 1.00 111 0 0.01 0.99 112 0 0.00 1.00 113 0 0.00 1.00 114 0 0.00 1.00 115 0 0.00 1.00 116 0 0.00 1.00 117 0 0.00 1.00 118 0 0.00 1.00 119 0 0.00 1.00 120 0 0.08 0.92 121 0 0.00 1.00 122 0 0.00 1.00 123 0 0.00 1.00 124 0 0.06 0.94 125 0 0.00 1.00 126 0 0.00 1.00 127 0 0.19 0.81 128 0 0.20 0.80 129 0 0.00 1.00 130 0 0.03 0.97 131 0 0.00 1.00 132 0 0.00 1.00 133 0 0.00 1.00 134 0 0.77 0.23 135 0 0.03 0.97 136 0 0.00 1.00 137 0 0.00 1.00 138 0 0.00 1.00 139 0 0.33 0.67 140 0 0.00 1.00 141 0 0.00 1.00 142 0 0.00 1.00 143 0 0.00 1.00 144 0 0.00 1.00 145 0 0.00 1.00 146 0 0.00 1.00 147 0 0.00 1.00 148 0 0.00 1.00 149 0 0.00 1.00 150 0 0.02 0.98 > predict(m, newdata=iris, type="class") [1] "setosa" "setosa" "setosa" "setosa" [5] "setosa" "setosa" "setosa" "setosa" [9] "setosa" "setosa" "setosa" "setosa" [13] "setosa" "setosa" "setosa" "setosa" [17] "setosa" "setosa" "setosa" "setosa" [21] "setosa" "setosa" "setosa" "setosa" [25] "setosa" "setosa" "setosa" "setosa" [29] "setosa" "setosa" "setosa" "setosa" [33] "setosa" "setosa" "setosa" "setosa" [37] "setosa" "setosa" "setosa" "setosa" [41] "setosa" "setosa" "setosa" "setosa" [45] "setosa" "setosa" "setosa" "setosa" [49] "setosa" "setosa" "versicolor" "versicolor" [53] "versicolor" "versicolor" "versicolor" "versicolor" [57] "versicolor" "versicolor" "versicolor" "versicolor" [61] "versicolor" "versicolor" "versicolor" "versicolor" [65] "versicolor" "versicolor" "versicolor" "versicolor" [69] "versicolor" "versicolor" "versicolor" "versicolor" [73] "versicolor" "versicolor" "versicolor" "versicolor" [77] "versicolor" "versicolor" "versicolor" "versicolor" [81] "versicolor" "versicolor" "versicolor" "virginica" [85] "versicolor" "versicolor" "versicolor" "versicolor" [89] "versicolor" "versicolor" "versicolor" "versicolor" [93] "versicolor" "versicolor" "versicolor" "versicolor" [97] "versicolor" "versicolor" "versicolor" "versicolor" [101] "virginica" "virginica" "virginica" "virginica" [105] "virginica" "virginica" "virginica" "virginica" [109] "virginica" "virginica" "virginica" "virginica" [113] "virginica" "virginica" "virginica" "virginica" [117] "virginica" "virginica" "virginica" "virginica" [121] "virginica" "virginica" "virginica" "virginica" [125] "virginica" "virginica" "virginica" "virginica" [129] "virginica" "virginica" "virginica" "virginica" [133] "virginica" "versicolor" "virginica" "virginica" [137] "virginica" "virginica" "virginica" "virginica" [141] "virginica" "virginica" "virginica" "virginica" [145] "virginica" "virginica" "virginica" "virginica" [149] "virginica" "virginica" >
r/neural_network.1481671224.txt.gz · Last modified: 2016/12/14 07:50 by hkimscil