quartile
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
quartile [2019/09/16 11:46] – hkimscil | quartile [2023/09/11 08:42] (current) – [r method] hkimscil | ||
---|---|---|---|
Line 11: | Line 11: | ||
사분범위 = (상한사분위수) - (하한사분위수) | 사분범위 = (상한사분위수) - (하한사분위수) | ||
- | ---- | ||
====== Finding lower and upper quartile ====== | ====== Finding lower and upper quartile ====== | ||
- | ===== head first ===== | + | ===== e.g. 1, Head First method |
+ | < | ||
+ | > k | ||
+ | [1] 1 2 3 4 5 6 7 8 | ||
+ | > quantile(k) | ||
+ | 0% 25% 50% 75% 100% | ||
+ | 1.00 2.75 4.50 6.25 8.00 | ||
+ | > </ | ||
+ | |||
+ | < | ||
+ | head first | ||
* 하한 | * 하한 | ||
* n / 4 = ? | * n / 4 = ? | ||
Line 23: | Line 32: | ||
* 정수가 아니면? 올림을 한 위치 값 | * 정수가 아니면? 올림을 한 위치 값 | ||
- | < | + | 위의 방법으로는 |
- | > k | + | |
- | [1] 1 2 3 4 5 6 7 8 | + | |
- | > quantile(k) | + | |
- | 0% 25% 50% 75% 100% | + | |
- | 1.00 2.75 4.50 6.25 8.00 | + | |
- | > </ | + | |
- | 그러나, | + | |
lower quartile: 2.5 | lower quartile: 2.5 | ||
upper quartile: 6.5 | upper quartile: 6.5 | ||
+ | Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 | ||
+ | * 11 / 4 = 2.75 -> 3 | ||
+ | * lower quartile: 15 | ||
+ | * 33 / 4 = 8.25 -> 9 | ||
+ | * upper: 43 | ||
- | ===== Method 1 ===== | ||
- | * Use the median to divide the ordered data set into two halves. | ||
- | * If there is an odd number of data points in the original ordered data set, do not include the median (the central value in the ordered list) in either half. | ||
- | * If there is an even number of data points in the original ordered data set, split this data set exactly in half. | ||
- | * The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. | ||
- | * This rule is employed by the TI-83 calculator boxplot and "1-Var Stats" functions. | ||
- | ===== Method 2 ===== | + | ===== r method |
+ | in r | ||
+ | < | ||
+ | j <- c(1, | ||
+ | j <- sort(j) | ||
+ | quantile(j) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > j <- c(1, | ||
+ | > j <- sort(j) | ||
+ | > quantile(j) | ||
+ | 0% 25% 50% 75% 100% | ||
+ | | ||
+ | > | ||
+ | </ | ||
+ | Odd number of elements | ||
* Use the median to divide the ordered data set into two halves. | * Use the median to divide the ordered data set into two halves. | ||
- | * If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. | + | * If there are an odd number of data points in the original ordered data set, include the median (the central value in the ordered list) in both halves. |
- | * If there are an even number of data points in the original ordered data set, split this data set exactly in half. | + | |
- | * The lower quartile value is the median of the lower half of the data. The upper quartile value is the median of the upper half of the data. | + | |
- | * The values found by this method are also known as " | + | |
- | Ordered Data Set: 6, 7, 15, 36, 39, 40, 41, 42, 43, 47, 49 | ||
- | | | method | + | < |
- | | Q1 | 15 | 25.5 | | + | j2 <- c(1, |
- | | Q2 | 40 | 40 | | + | j2 <- sort(j2) |
- | | Q3 | 43 | 42.5 | | + | quantile(j2) |
+ | </ | ||
+ | < | ||
+ | > j2 <- c(1, | ||
+ | > j2 <- sort(j2) | ||
+ | > quantile(j2) | ||
+ | 0% 25% 50% 75% 100% | ||
+ | 1.00 2.25 3.50 4.75 6.00 | ||
+ | > | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | Even number of elements | ||
+ | * If there are an even number of data points in the original ordered data set, split this data set exactly in half. 즉, 3과 4의 가운데 값 (50%) = 3.5 | ||
+ | | ||
+ | * upper bound는 뒷부분의 반인 | ||
+ | |||
+ | < | ||
+ | > j3 <- c(7, 18, 5, 9, 12, 15) | ||
+ | > j3s <- sort(j3) | ||
+ | > j3s | ||
+ | [1] 5 7 9 12 15 18 | ||
+ | > quantile(j3s) | ||
+ | | ||
+ | | ||
+ | > | ||
+ | </ | ||
+ | median = (9+12)/2 | ||
+ | the 1st quartile = 7 + (9-7)*(1/4) = 7 + 0.5 = 7.5 | ||
+ | the 3rd quartile = 12 + (12-9)*(3/ | ||
- | in r | ||
- | < | ||
- | > k | ||
- | [1] 1 2 3 4 5 6 7 8 | ||
- | > quantile(k) | ||
- | 0% 25% 50% 75% 100% | ||
- | 1.00 2.75 4.50 6.25 8.00 | ||
- | > </ | ||
---- | ---- | ||
in r | in r |
quartile.1568602011.txt.gz · Last modified: 2019/09/16 11:46 by hkimscil