User Tools

Site Tools


outliers

This is an old revision of the document!


Table of Contents

Outliers e.g.,

This is further reading for detecting outliers, adopted from http://www.ats.ucla.edu/stat/spss/webbooks/reg/chapter2/spssreg2.htm .

attachment:crime.sav
attachment:outlierCheck.sps

get file = "DirectoryOfYourComputer\crime.sav".

descriptives
  /var=crime murder pctmetro pctwhite pcths poverty single.
		Descriptive Statistics
			N	Minimum	Maximum	Mean	Std. Deviation
violent crime rate	51	82	2922	612.84	441.100
murder rate		51	1.60	78.50	8.7275	10.71758
pct metropolitan	51	24.00	100.00	67.3902	21.95713
pct white		51	31.80	98.50	84.1157	13.25839
pct hs graduates	51	64.30	86.60	76.2235	5.59209
pct poverty		51	8.00	26.40	14.2588	4.58424
pct single parent	51	8.40	22.10	11.3255	2.12149
Valid N (listwise)	51				
graph
  /scatterplot(matrix)=crime murder pctmetro pctwhite pcths poverty single .

scatterplot for all variables

GRAPH /SCATTERPLOT(BIVAR)=pctmetro WITH crime BY state(name) .

scatterplot of pcmetro by crime by state

GRAPH /SCATTERPLOT(BIVAR)=poverty WITH crime BY state(name) .

scatterplot of poverty by state

GRAPH /SCATTERPLOT(BIVAR)=single WITH crime BY state(name) .

scatterplot of single by state

regression
  /dependent crime
  /method=enter pctmetro poverty single.
		Model Summary
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.916a	.840	.830	182.068
a. Predictors: (Constant), pct single parent, pct metropolitan, pct poverty

			ANOVA(b)
Model			Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8170480.211	3	2723493.404	82.160	.000a
	Residual	1557994.534	47	33148.820		
	Total		9728474.745	50			
a. Predictors: (Constant), pct single parent, pct metropolitan, pct poverty
b. Dependent Variable: violent crime rate

			Coefficients(a)
		Unstandardized Coefficients		Standardized Coefficients
Model				B		Std. Error	Beta	t	Sig.
1	(Constant)		-1666.436	147.852			-11.271	.000
	pct metropolitan	7.829		1.255		.390	6.240	.000
	pct poverty		17.680		6.941		.184	2.547	.014
	pct single parent	132.408		15.503		.637	8.541	.000
a. Dependent Variable: violent crime rate
regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram.
		Model Summary(b)
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate
1	.916a	.840	.830	182.068
a. Predictors: (Constant), pct single parent, pct metropolitan, pct poverty
b. Dependent Variable: violent crime rate

			ANOVA(b)
Model			Sum of Squares	df	Mean Square	F	Sig.
1	Regression	8170480.211	3	2723493.404	82.160	.000a
	Residual	1557994.534	47	33148.820		
	Total		9728474.745	50			
a. Predictors: (Constant), pct single parent, pct metropolitan, pct poverty
b. Dependent Variable: violent crime rate

			Coefficients(a)
		Unstandardized Coefficients		Standardized Coefficients
Model				B		Std. Error	Beta	t	Sig.
1	(Constant)		-1666.436	147.852		-11.271	.000
	pct metropolitan	7.829		1.255		.390	6.240	.000
	pct poverty		17.680		6.941		.184	2.547	.014
	pct single parent	132.408		15.503		.637	8.541	.000
a. Dependent Variable: violent crime rate

		Residuals Statistics(a)
			Minimum		Maximum		Mean	Std.Deviation	N
Predicted Value	-30.51		2509.43		612.84	404.240		51
Residual		-523.013	426.111		.000	176.522		51
Std. Predicted Value	-1.592		4.692		.000	1.000		51
Std. Residual		-2.873		2.340		.000	.970		51
a. Dependent Variable: violent crime rate

histogram

regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid).

histogram sdresid

regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid) id(state) outliers(sdresid).

see at http://www2.bc.edu/~stevenw/MB875/mb875_Analyzing%20Residuals.htm for sdresid (studentized deleted residuals).

		Residuals Statistics(a)
					Minimum		Maximum		Mean	Std. Deviation	N
Predicted Value				-30.51		2509.43		612.84	404.240		51
Std. Predicted Value			-1.592		4.692		.000	1.000		51
Standard Error of Predicted Value	25.788		133.343		47.561	18.563		51
Adjusted Predicted Value		-39.26		2032.11		605.66	369.075		51
Residual				-523.013	426.111		.000	176.522		51
Std. Residual				-2.873		2.340		.000	.970		51
Stud. Residual				-3.194		3.328		.015	1.072		51
Deleted Residual			-646.503	889.885		7.183	223.668		51
Stud. Deleted Residual		-3.571		3.766		.018	1.133		51
Mahal. Distance			.023		25.839		2.941	4.014		51
Cook's Distance			.000		3.203		.089	.454		51
Centered Leverage Value		.000		.517		.059	.080		51
a. Dependent Variable: violent crime rate
regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid) id(state) outliers(sdresid)
  /casewise=plot(sdresid) outliers(2)  .
		Casewise Diagnostics(a)
Case Number	state	Stud. Deleted 	violent crime 	Predicted 	Residual
			Residual	rate		Value
9		fl	2.620		1206		779.89		426.111
25		ms	-3.571		434		957.01		-523.013
51		dc	3.766		2922		2509.43		412.566
a. Dependent Variable: violent crime rate
regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid lever) id(state) outliers(sdresid lever)
  /casewise=plot(sdresid) outliers(2).
		Outlier Statistics(a)
				Case 	state	Statistic
				Number
Stud. Deleted Residual	1	51	dc 	3.766
			2	25	ms 	-3.571
			3	9	fl 	2.620
			4	18	la 	-1.839
			5	39	ri 	-1.686
			6	12	ia 	1.590
			7	47	wa 	-1.304
			8	13	id 	1.293
			9	14	il 	1.152
			10	35	oh 	-1.148
Centered Leverage Value	1	51	dc 	.517
			2	1	ak 	.241
			3	25	ms 	.171
			4	49	wv 	.161
			5	18	la 	.146
			6	46	vt 	.117
			7	9	fl 	.083
			8	26	mt 	.080
			9	31	nj 	.075
			10	17	ky 	.072
a. Dependent Variable: violent crime rate

histogram sdresid
histogram leverage

regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid lever) id(state) outliers(sdresid, lever)
  /casewise=plot(sdresid)  outliers(2)
  /scatterplot(*lever, *sdresid).

histogram sdresid

regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid lever) id(state) outliers(sdresid, lever, cook)
  /casewise=plot(sdresid)  outliers(2) cook dffit
  /scatterplot(*lever, *sdresid).
		Casewise Diagnostics(a)
Case Number	state	Stud. 		violent 	Cook's		DFFIT
			Deleted		crime		Distance	
			Residual	rate
9	fl		2.620		1206		.174		48.507
25	ms		-3.571		434		.602		-123.490
51	dc		3.766		2922		3.203		477.319
a. Dependent Variable: violent crime rate

		Outlier Statistics(a)
		Case Number	state	Statis	Sig. F
Stud.  		1	51	dc 	3.766	
Deleted		2	25	ms 	-3.571	
Residual	3	9	fl 	2.620	
		4	18	la 	-1.839	
		5	39	ri 	-1.686	
		6	12	ia 	1.590	
		7	47	wa 	-1.304	
		8	13	id 	1.293	
		9	14	il 	1.152	
		10	35	oh 	-1.148	
Cook's 		1	51	dc 	3.203	.021
Distance	2	25	ms 	.602	.663
		3	9	fl 	.174	.951
		4	18	la 	.159	.958
		5	39	ri 	.041	.997
		6	12	ia 	.041	.997
		7	13	id 	.037	.997
		8	20	md 	.020	.999
		9	6	co 	.018	.999
		10	49	wv 	.016	.999
Centered  	1	51	dc 	.517	
Leverage	2	1	ak 	.241	
Value		3	25	ms 	.171	
		4	49	wv 	.161	
		5	18	la 	.146	
		6	46	vt 	.117	
		7	9	fl 	.083	
		8	26	mt 	.080	
		9	31	nj 	.075	
		10	17	ky 	.072	
a. Dependent Variable: violent crime rate
regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid lever) id(state) outliers(sdresid, lever, cook)
  /casewise=plot(sdresid)  outliers(2) cook dffit
  /scatterplot(*lever, *sdresid)
  /save sdbeta(sdfb).
list
  /variables state sdfb1 sdfb2 sdfb3
  /cases from 1 to 10.
state       sdfb1       sdfb2       sdfb3

ak        -.10618     -.13134      .14518
al         .01243      .05529     -.02751
ar        -.06875      .17535     -.10526
az        -.09476     -.03088      .00124
ca         .01264      .00880     -.00364
co        -.03705      .19393     -.13846
ct        -.12016      .07446      .03017
de         .00558     -.01143      .00519
fl         .64175      .59593     -.56060
ga         .03171      .06426     -.09120


Number of cases read:  10    Number of cases listed:  10
VARIABLE LABLES sdfb1 "Sdfbeta pctmetro"
                              /sdfb2 "Sdfbeta poverty"
                              /sdfb3 "Sdfbeta single" .

GRAPH
  /SCATTERPLOT(OVERLAY)=sid sid sid  WITH sdfb1 sdfb2 sdfb3 (PAIR) BY state(name)
  /MISSING=LISTWISE .

dbfBeta value

Note
MeasureValue
leverage >(2k+2)/n
abs(rstu) > 2
Cook's D > 4/n
abs(DFBETA) > 2/sqrt(n)
 PRED
  Unstandardized predicted values.
 RESID
  Unstandardized residuals.
 DRESID
  Deleted residuals.
 ADJPRED
  Adjusted predicted values.
 ZPRED
  Standardized predicted values.
 ZRESID
  Standardized residuals.
 SRESID
  Studentized residuals.
 SDRESID
  Studentized deleted residuals. 
 SEPRED
  Standard errors of the predicted values.
 MAHAL
  Mahalanobis distances.
 COOK
  Cook’s distances.
 LEVER
  Centered leverage values. 
 DFBETA
  Change in the regression coefficient that results from the deletion of the ith case. A DFBETA value is computed for each case for each regression coefficient generated by a model.
 SDBETA
  Standardized DFBETA. An SDBETA value is computed for each case for each regression coefficient generated by a model. 
 DFFIT
  Change in the predicted value when the ith case is deleted. 
 SDFIT
  Standardized DFFIT. 
 COVRATIO
  Ratio of the determinant of the covariance matrix with the ith case deleted to the determinant of the covariance matrix with all cases included. 
 MCIN
  Lower and upper bounds for the prediction interval of the mean predicted response. A lowerbound LMCIN and an upperbound UMCIN are generated. The default confidence interval is 95%. The confidence interval can be reset with the CIN subcommand. (See Dillon & Goldstein
 ICIN
  Lower and upper bounds for the prediction interval for a single observation. A lowerbound LICIN and an upperbound UICIN are generated. The default confidence interval is 95%. The confidence interval can be reset with the CIN subcommand. (See Dillon & Goldstein
regression
  /dependent crime
  /method=enter pctmetro poverty single
  /residuals=histogram(sdresid lever) id(state) outliers(sdresid, lever, cook)
  /casewise=plot(sdresid)  outliers(2) cook dffit
  /scatterplot(*lever, *sdresid)
  /partialplot.  

r.crime.regression.outlier.01.jpg
r.crime.regression.outlier.02.jpg
r.crime.regression.outlier.03.jpg

regression
  /dependent crime
  /method=enter pctmetro poverty single.
			Coefficients(a)
		Unstandardized Coefficients		Standardized Coefficients
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	-1666.436	147.852		-11.271	.000
	pct metropolitan	7.829	1.255	.390	6.240	.000
	pct poverty	17.680	6.941	.184	2.547	.014
	pct single parent	132.408	15.503	.637	8.541	.000
a. Dependent Variable: violent crime rate
compute filtvar = (state NE "dc").
filter by filtvar.
regression
  /dependent crime
  /method=enter pctmetro poverty single . 
			Coefficients(a)
		Unstandardized Coefficients		Standardized Coefficients
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	-1197.538	180.487		-6.635	.000
	pct metropolitan	7.712	1.109	.565	6.953	.000
	pct poverty	18.283	6.136	.265	2.980	.005
	pct single parent	89.401	17.836	.446	5.012	.000
a. Dependent Variable: violent crime rate

e.g., 2

redirected from . . . [wiki:MultipleRegression#s-4 multiple regression].
attachment:elemapi2.sav
attachment:r.api00.OutlierDetection.sps

inspection

descriptives /var= ALL .
Descriptive Statistics
N Minimum Maximum Mean Std. Deviation
api 2000 400 369 940 647.62 142.249
english language learners 400 0 91 31.45 24.839
avg class size k-3 398 14 25 19.16 1.369
avg parent ed 381 1.00 4.62 2.6685 .76379
pct free meals 400 0 100 60.32 31.912
Valid N (listwise) 379
graph
  /scatterplot(matrix)=api00 ell acs_k3 avg_ed meals .

{{:r.01.jpg,width=300|ell",selflink)]]|{{:r.02.jpg,width=300|acsk3",selflink)]]| |{{:r.03.jpg,width=300|ave_ed",selflink)]]|{{:r.04.jpg,width=300|meals",selflink)]]| We speculate that the second IV (average class size) is not quite related to DV (api00). And, there seems no particular suspicious data. ---- <code>REGRESSION /DEPENDENT api00 /METHOD=ENTER ell acs_k3 avg_ed meals /residuals=histogram(sdresid lever) id(snum) outliers(sdresid, lever, cook) /casewise=plot(sdresid) outliers(2) cook dffit /scatterplot(*lever, *sdresid) /save sdbeta(sdfb) /partialplot. </code> | Model Summary |||||| |Model | R | R Square | Adjusted[[br]]R Square | Std. Error \\ of the Estimate | |1 | .912a | .833 | .831 | 58.633 | | a. Predictors: (Constant), pct free meals, avg class size k-3, english language learners, avg parent ed |||||| <WRAP clear /> | ANOVA(b) |||||||| |Model | | Sum of Squares | df | Mean Square | F | Sig. | |1 | Regression | 6393719.254 | 4 | 1598429.813 | 464.956 | .000a | | | Residual | 1285740.498 | 374 | 3437.809 | | | | | Total | 7679459.752 | 378 | | | | | a. Predictors: (Constant), pct free meals, avg class size k-3, english language learners, avg parent ed |||||||| | b. Dependent Variable: api 2000 |||||||| <WRAP clear /> | Coefficients(a) ||||||||| | | | Unstandardized[[br]]Coefficients | | Standardized[[br]]Coefficients | | | |Model | | B | Std. Error | Beta | t | Sig. | |1 | (Constant) | 709.639 | 56.240 | | 12.618 | .000 | | | english language learners | -.843 | .196 | -.147 | -4.307 | .000 | | | avg class size k-3 | 3.388 | 2.333 | .032 | 1.452 | .147 | | | avg parent ed | 29.072 | 6.924 | .156 | 4.199 | .000 | | | pct free meals | -2.937 | .195 | -.655 | -15.081 | .000 | | a. Dependent Variable: api 2000 ||||||||| | Casewise Diagnostics(a) |||||||| |Case Number | school number | Stud. Deleted[[br]]Residual | api 2000 | Cook's[[br]]Distance | DFFIT | |93 | 1497 | 2.170 | 604 | .010 | 1.292 | |97 | 1539 | 2.230 | 700 | .006 | .826 | |100 | 1515 | 2.222 | 667 | .005 | .661 | |105 | 1516 | 2.128 | 597 | .010 | 1.380 | |135 | 1633 | 2.072 | 584 | .044 | 6.085 | |188 | 1731 | 2.121 | 719 | .015 | 2.126 | |203 | 1621 | 2.034 | 717 | .006 | .831 | |226 | 211 | -3.241 | 386 | .015 | -1.325 | |227 | 182 | -2.653 | 411 | .005 | -.581 | |228 | 167 | 2.903 | 774 | .010 | .987 | |232 | 210 | -2.369 | 432 | .018 | -2.263 | |234 | 165 | -2.734 | 449 | .019 | -1.997 | |252 | 3700 | 2.036 | 717 | .013 | 1.878 | |259 | 3537 | -2.425 | 694 | .012 | -1.436 | |271 | 3758 | 3.012 | 690 | .022 | 2.108 | |272 | 3794 | 2.083 | 610 | .010 | 1.400 | |274 | 3759 | -2.290 | 585 | .069 | -8.646 | |304 | 4507 | 2.011 | 751 | .013 | 1.917 | |327 | 4737 | 2.470 | 808 | .012 | 1.447 | |334 | 4744 | 2.160 | 700 | .005 | .645 | |346 | 5362 | -2.138 | 487 | .010 | -1.359 | | a. Dependent Variable: api 2000 |||||||| | Residuals Statistics(a) |||||||| | | Minimum | Maximum | Mean | Std. Deviation | N | |Predicted Value | 449.17 | 910.04 | 647.64 | 130.056 | 379 | |Std. Predicted Value | -1.526 | 2.018 | .000 | 1.000 | 379 | |Standard Error of Predicted Value | 3.218 | 14.681 | 6.496 | 1.780 | 379 | |Adjusted Predicted Value | 449.44 | 909.36 | 647.65 | 130.056 | 379 | |Residual | -187.020 | 173.697 | .000 | 58.322 | 379 | |Std. Residual | -3.190 | 2.962 | .000 | .995 | 379 | |Stud. Residual | -3.201 | 2.980 | .000 | 1.002 | 379 | |Deleted Residual | -188.345 | 175.805 | -.016 | 59.138 | 379 | |Stud. Deleted Residual | -3.241 | 3.012 | .000 | 1.005 | 379 | |Mahal. Distance | .141 | 22.702 | 3.989 | 3.030 | 379 | |Cook's Distance | .000 | .069 | .003 | .006 | 379 | |Centered Leverage Value | .000 | .060 | .011 | .008 | 379 | | a. Dependent Variable: api 2000 |||||||| | Outlier Statistics(a) |||||||| | | | Case Number | school number | Statistic | Sig. F | |Stud. Deleted Residual | 1 | 226 | 211 | -3.241 | | | | 2 | 271 | 3758 | 3.012 | | | | 3 | 228 | 167 | 2.903 | | | | 4 | 234 | 165 | -2.734 | | | | 5 | 227 | 182 | -2.653 | | | | 6 | 327 | 4737 | 2.470 | | | | 7 | 259 | 3537 | -2.425 | | | | 8 | 232 | 210 | -2.369 | | | | 9 | 274 | 3759 | -2.290 | | | | 10 | 97 | 1539 | 2.230 | | |Cook's Distance | 1 | 274 | 3759 | .069 | .997 | | | 2 | 135 | 1633 | .044 | .999 | | | 3 | 26 | 4299 | .030 | 1.000 | | | 4 | 193 | 1952 | .025 | 1.000 | | | 5 | 271 | 3758 | .022 | 1.000 | | | 6 | 234 | 165 | .019 | 1.000 | | | 7 | 232 | 210 | .018 | 1.000 | | | 8 | 200 | 1872 | .018 | 1.000 | | | 9 | 108 | 1606 | .018 | 1.000 | | | 10 | 388 | 4878 | .017 | 1.000 | |Centered Leverage Value | 1 | 274 | 3759 | .060 | | | | 2 | 37 | 4308 | .058 | | | | 3 | 209 | 1795 | .050 | | | | 4 | 135 | 1633 | .046 | | | | 5 | 26 | 4299 | .040 | | | | 6 | 69 | 3000 | .037 | | | | 7 | 372 | 6068 | .036 | | | | 8 | 30 | 4317 | .035 | | | | 9 | 147 | 1709 | .035 | | | | 10 | 193 | 1952 | .033 | | | a. Dependent Variable: api 2000 ||||||| {{:r.api.histogram.sdresid.jpg|sdresidual check
leverage check

plot spred by sresid)]]
===== Outlier dection =====
Let's say, we decide to opt out cases whose studentized deleted residual value exceed normal. We set the criterion as ABS(sdresid) > 2. These cases which meet this criterion will filtered out.

We need to save some residual statistics first, with regression method. Saved values include:
 PRED
 ZPRED
 MAHAL
 COOK
 LEVER
 RESID
 ZRESID
 SDRESID
 DFBETA
Among them, we take a look at SDRESID, whose variable name will be SDR_1 in spss data set.

For the referece, 

| Note: outlier detection  ||| 
|Measure|Value  |   | 
|leverage  | >(2k+2)/n  | 0.021108179  | 
|abs(rstu)  | > 2  | 2  | 
|Cook's D  | > 4/n  | 0.01055409  | 
|abs(DFBETA)  | > 2/sqrt(n)  | 0.102733099  | 
<WRAP clear />


<code>REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT api00
  /METHOD=ENTER meals ell acs_k3 avg_ed
  /residuals=histogram(sdresid lever) id(snum) outliers(sdresid, lever, cook) Durbin
  /casewise=plot(sdresid)  outliers(2) cook dffit
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /SAVE PRED ZPRED MAHAL COOK LEVER RESID ZRESID SDRESID DFBETA.
</code>
Then, we need to filter out cases whose SDR_1 value exceed: 
 abs(SDR_1) > 2
with the below command.
<code>USE ALL.
COMPUTE filterVar=(abs(SDR)_1 < 2).
FILTER BY filterVar.
EXECUTE.
</code>

Then, we do regression again, excluding the suspicious cases. But, this time we do not save the residuals.
<code>REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA CHANGE ZPP
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT api00
  /METHOD=ENTER ell avg_ed acs_k3 meals
  /SCATTERPLOT=(*ZRESID ,*ZPRED) .
</code>
 
Compare the ouptput between the previous and this regression. 

|  Model Summaryb  ||||||||||  
|Model  | R  | R[[br]]Square  | Adjusted[[br]]R Square  | Std. Error of[[br]]the Estimate  | Change[[br]]Statistics  |   |   |   |   | 
|  |   |   |   |   | R Square Change  | F Change  | df1  | df2  | Sig. F Change  | 
|1  | .938a  | .880  | .879  | 49.914  | .880  | 649.458  | 4  | 353  | .000  | 

|  | |  ANOVAb  ||||| 
|Model  |   | Sum of[[br]]Squares  | df  | Mean[[br]]Square  | F  | Sig.  | 
|1  | Regression  | 6472284.822  | 4  | 1618071.206  | 649.458  | .000a  | 
|  | Residual  | 879470.664  | 353  | 2491.418  |   |   | 
|  | Total  | 7351755.486  | 357  |   |   |   | 

|  Coefficientsa  |||||||||| 
|Model  |   | Unstandardized[[br]]Coefficients  |   | Standardized[[br]]Coefficients  | t  | Sig.  | Correlations  |   |   | 
|  |   | B  | Std. Error  | Beta  |   |   | Zero-order  | Partial  | Part  | 
|1  | (Constant)  | 705.495  | 51.072  |   | 13.814  | .000  |   |   |   | 
|  | ell  | -.915  | .170  | -.160  | -5.374  | .000  | -.789  | -.275  | -.099  | 
|  | avg_ed  | 25.661  | 6.061  | .138  | 4.234  | .000  | .809  | .220  | .078  | 
|  | acs_k3  | 4.452  | 2.127  | .040  | 2.093  | .037  | .204  | .111  | .039  | 
|  | meals  | -3.056  | .171  | -.683  | -17.868  | .000  | -.928  | -.689  | -.329  | 

{{tag>statistics "multiple regression" regression "research methods"

outliers.1462313111.txt.gz · Last modified: 2016/05/04 06:35 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki