This is an old revision of the document!
Mean
Mean Poisson distribution = $\lambda$
Poisson Distribution
\begin{eqnarray*}
P(X=x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\
\end{eqnarray*}
혹은
\begin{eqnarray*}
P(x) = \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\
\end{eqnarray*}
우선 Taylor series을 이용하면
\begin{eqnarray*}
e^{a} = \sum_{y=0}^{\infty} \frac{a^y}{y!} \\
\end{eqnarray*}
임을 알고 있다.
\begin{eqnarray*}
E(X) & = & \sum_{x} xp(X=x) \\
\text{or } \\
E(X) & = & \sum_{x} xp(x) \\
\end{eqnarray*}
Poisson distribution 을 다루고 있으므로
\begin{eqnarray*}
E(X) & = & \sum_{x=0}^{\infty} x \cdot \frac{e^{-\lambda} \cdot \lambda^x}{x!} \\
& = & e^{-\lambda} \cdot \sum_{x=0}^{\infty} x \cdot \frac{\lambda^x}{x!} \\
& = & e^{-\lambda} \cdot \sum_{x=0}^{\infty} x \cdot \frac{\lambda^x}{x(x-1)!} \\
& = & e^{-\lambda} \cdot \sum_{x=1}^{\infty} x \cdot \frac{\lambda \cdot \lambda^{x-1}}{x(x-1)!} \\
& = & \lambda \cdot e^{-\lambda} \cdot \sum_{x=1}^{\infty} \frac{\lambda^{x-1}}{(x-1)!} \\
\text{let y = x-1} & \\
& = & \lambda \cdot e^{-\lambda} \cdot \sum_{y=0}^{\infty} \frac{\lambda^{y}}{(y)!} \\
& = & \lambda \cdot e^{-\lambda} \cdot \underline{\sum_{y=0}^{\infty} \frac{\lambda^{y}}{(y)!}} \\
\text{recall: } \; \\
e^{a} = \sum_{y=0}^{\infty} \frac{a^y}{y!} \\
& = & \lambda \cdot e^{-\lambda} \cdot e^{\lambda} \\
& = & \lambda \\
\end{eqnarray*}
Variance
Variance는 위의 binomial 케이스처럼 좀 복잡하다.
Variance of Poisson distribution = $\lambda$