mean_and_variance_of_geometric_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mean_and_variance_of_geometric_distribution [2023/10/18 17:33] hkimscilmean_and_variance_of_geometric_distribution [2025/10/01 13:17] (current) – [Mean] hkimscil
Line 1: Line 1:
 ====== Mean and Variance of Geometric Distribution ====== ====== Mean and Variance of Geometric Distribution ======
 +기하분포의 평균, 그리고 분산
 ====== Mean ====== ====== Mean ======
 기대값 E(X)는 아래처럼 배웠고.  기대값 E(X)는 아래처럼 배웠고. 
 +
 \begin{align} \begin{align}
 E(X) & = \sum_{k=1}^{\infty} k \cdot P(X=k) \nonumber \\ E(X) & = \sum_{k=1}^{\infty} k \cdot P(X=k) \nonumber \\
 \end{align} \end{align}
 +
 $P(X=k) $가 geometric distiribution에서는 $q^{(k-1)} \cdot p  $ 이므로 $E(X)$는 아래와 같다. $P(X=k) $가 geometric distiribution에서는 $q^{(k-1)} \cdot p  $ 이므로 $E(X)$는 아래와 같다.
  
Line 34: Line 37:
 (1-(1-p))E(X) & = p \frac {1 - (1-p)^k} {1-(1-p)}, \;\;\; \text{because  } {(1-p)^k \rightarrow 0} \\  (1-(1-p))E(X) & = p \frac {1 - (1-p)^k} {1-(1-p)}, \;\;\; \text{because  } {(1-p)^k \rightarrow 0} \\ 
 & = p \frac {1}{1-(1-p)} \\ & = p \frac {1}{1-(1-p)} \\
 +& = 1 \\
 p \cdot E(X) & = 1 \\ p \cdot E(X) & = 1 \\
 \therefore \quad E(X) & = \frac {1}{p} \\ \therefore \quad E(X) & = \frac {1}{p} \\
Line 55: Line 59:
 $p(x) = q^{(k-1)} \cdot p $ 혹은  $p(x) = q^{(k-1)} \cdot p $ 혹은 
 $p(x) = (1-p)^{(k-1)} \cdot p $ $p(x) = (1-p)^{(k-1)} \cdot p $
-그리고 우선 $(1)$식에서 $E(X^2)$ 부분을 보면, +그리고 우선 $(6)$식에서 $E(X^2)$ 부분을 보면, 
  
 \begin{align} \begin{align}
mean_and_variance_of_geometric_distribution.1697618012.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki