krackhardt_datasets
This is an old revision of the document!
Table of Contents
Krackhardt Datasets
Krackhardt dataset in NetData packages
Analysis of Structural Features with advice and reports to data
install.packages("NetData") # install.packages("igraph") library(NetData) library(igraph) data(package="NetData") data(kracknets, package = "NetData") head(krack_full_data_frame)
> head(krack_full_data_frame) ego alter advice_tie friendship_tie reports_to_tie 1 1 1 0 0 0 2 1 2 1 1 1 3 1 3 0 0 0 4 1 4 1 1 0 5 1 5 0 0 0 6 1 6 0 0 0 >
krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0)) head(krack_full_nonzero_edges)
> krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0)) > head(krack_full_nonzero_edges) ego alter advice_tie friendship_tie reports_to_tie 2 1 2 1 1 1 4 1 4 1 1 0 8 1 8 1 1 0 12 1 12 0 1 0 16 1 16 1 1 0 18 1 18 1 0 0 >
subset function은 1 10 0 0 0
와 같은 데이터 열을 제외하려고 사용
################################################# # data frame 형식의 krack_full_nonzero_edges # (원 데이터가 data.frame형식의 # krack_full_data_frame이었음)을 # igraph 포맷의 graph로 변환함 (graph.data.frame) ################################################# krack_full <- graph.data.frame(krack_full_nonzero_edges) summary(krack_full)
> krack_full <- graph.data.frame(krack_full_nonzero_edges) > summary(krack_full) IGRAPH 750f8b3 DN-- 21 232 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), reports_to_tie (e/n) >
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0]) summary(krack_friend) krack_friend[] krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0]) summary(krack_advice) krack_advice[] krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0]) summary(krack_reports_to) krack_reports_to[]
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0]) > summary(krack_friend) IGRAPH 9c78e3a DN-- 21 102 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_friend[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . . 2 1 . . . . . . . . . . . . . . . . 1 . . 1 3 . . . . . . . . . . . . . 1 . . . . 1 . . 4 1 1 . . . . . 1 . . . 1 . . . 1 1 . . . . 5 . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1 6 . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . 1 . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . 10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 . 11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . . 12 1 . . 1 . . . . . . . . . . . . 1 . . . 1 13 . . . . 1 . . . . . 1 . . . . . . . . . . 14 . . . . . . 1 . . . . . . . 1 . . . . . . 15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . . 16 1 1 . . . . . . . . . . . . . . . . . . . 17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1 18 . 1 . . . . . . . . . . . . . . . . . . . 19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 . 20 . . . . . . . . . . 1 . . . . . . 1 . . . 21 . 1 . . . . . . . . . 1 . . . . 1 1 . . . > > krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0]) > summary(krack_advice) IGRAPH 9c7adf4 DN-- 21 190 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_advice[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1 2 . . . . . 1 1 . . . . . . . . . . . . . 1 3 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1 4 1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1 5 1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 6 . . . . . . . . . . . . . . . . . . . . 1 7 . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1 8 . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 9 1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1 10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 . 11 1 1 . . . . 1 . . . . . . . . . . . . . . 12 . . . . . . 1 . . . . . . . . . . . . . 1 13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . . 14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 16 1 1 . . . . . . . 1 . . . . . . . 1 . . . 17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1 18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1 19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 . 20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1 21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 . > > krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0]) > summary(krack_reports_to) IGRAPH 9c7cb3e DN-- 21 20 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_reports_to[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . . . . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . 1 . . . . . . . 4 . 1 . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . 1 . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . . . . . . . . . . . . . . . . . . 1 9 . . . . . . . . . . . . . 1 . . . . . . . 10 . . . . . . . . . . . . . . . . . 1 . . . 11 . . . . . . . . . . . . . . . . . 1 . . . 12 . . . . . . . . . . . . . . . . . . . . 1 13 . . . . . . . . . . . . . 1 . . . . . . . 14 . . . . . . 1 . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . 1 . . . . . . . 16 . 1 . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . . . . . . . . . 1 18 . . . . . . 1 . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . 1 . . . . . . . 20 . . . . . . . . . . . . . 1 . . . . . . . 21 . . . . . . 1 . . . . . . . . . . . . . . >
par(mfrow = c(1,3)) krack_friend_layout <- layout.fruchterman.reingold(krack_friend) plot(krack_friend, layout=krack_friend_layout, main = "friend", edge.arrow.size=.5) krack_advice_layout <- layout.fruchterman.reingold(krack_advice) plot(krack_advice, layout=krack_advice_layout, main = "advice", edge.arrow.size=.5) krack_reports_to_layout <- layout.fruchterman.reingold(krack_reports_to) plot(krack_reports_to, layout=krack_reports_to_layout, main = "reports to", edge.arrow.size=.5) par(mfrow = c(1,1))
# We'll use the "task" and "social" sub-graphs together as the # basis for our structural equivalence methods. First, we'll use # the task graph to generate an adjacency matrix. # # This matrix represents task interactions directed FROM the # row individual TO the column individual. krack_reports_to_matrix_row_to_col <- get.adjacency(krack_reports_to, attr='reports_to_tie') krack_reports_to_matrix_row_to_col # To operate on a binary graph, simply leave off the "attr" # parameter: krack_reports_to_matrix_row_to_col_bin <- get.adjacency(krack_reports_to) krack_reports_to_matrix_row_to_col_bin # For this lab, we'll use the valued graph. The next step is to # concatenate it with its transpose in order to capture both # incoming and outgoing task interactions. krack_reports_to_matrix_col_to_row <- t(as.matrix(krack_reports_to_matrix_row_to_col)) krack_reports_to_matrix_col_to_row krack_reports_to_matrix <- rbind(krack_reports_to_matrix_row_to_col, krack_reports_to_matrix_col_to_row) krack_reports_to_matrix
# Next, we'll use the same procedure to add social-interaction # information. krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie') krack_advice_matrix_row_to_col krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice) krack_advice_matrix_row_to_col_bin krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col)) krack_advice_matrix_col_to_row krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row) krack_advice_matrix krack_reports_to_advice_matrix <- rbind(krack_reports_to_matrix, krack_advice_matrix) krack_reports_to_advice_matrix
# Now we have a single 4n x n matrix that represents both in- and # out-directed task and social communication. From this, we can # generate an n x n correlation matrix that shows the degree of # structural equivalence of each actor in the network. krack_reports_to_advice_cors <- cor(as.matrix(krack_reports_to_advice_matrix)) krack_reports_to_advice_cors
# To use correlation values in hierarchical NetCluster, they must # first be coerced into a "dissimilarity structure" using dist(). # We subtract the values from 1 so that they are all greater than # or equal to 0; thus, highly dissimilar (i.e., negatively # correlated) actors have higher values. dissimilarity <- 1 - krack_reports_to_advice_cors krack_reports_to_dist <- as.dist(dissimilarity) krack_reports_to_dist # Note that it is also possible to use dist() directly on the # matrix. However, since cor() looks at associations between # columns and dist() looks at associations between rows, it is # necessary to transpose the matrix first. # # A variety of distance metrics are available; Euclidean # is the default. #m182_task_social_dist <- dist(t(m182_task_social_matrix)) #m182_task_social_dist # hclust() performs a hierarchical agglomerative NetCluster # operation based on the values in the dissimilarity matrix # yielded by as.dist() above. The standard visualization is a # dendrogram. By default, hclust() agglomerates clusters via a # "complete linkakage" algorithm, determining cluster proximity # by looking at the distance of the two points across clusters # that are farthest away from one another. This can be changed via # the "method" parameter. krack_reports_to_advice_hclust <- hclust(krack_reports_to_dist) plot(krack_reports_to_advice_hclust) # cutree() allows us to use the output of hclust() to set # different numbers of clusters and assign vertices to clusters # as appropriate. For example: cutree(krack_reports_to_advice_hclust, k=2) # Now we'll try to figure out the number of clusters that best # describes the underlying data. To do this, we'll loop through # all of the possible numbers of clusters (1 through n, where n is # the number of actors in the network). For each solution # corresponding to a given number of clusters, we'll use cutree() # to assign the vertices to their respective clusters # corresponding to that solution. # # From this, we can generate a matrix of within- and between- # cluster correlations. Thus, when there is one cluster for each # vertex in the network, the cell values will be identical to the # observed correlation matrix, and when there is one cluster for # the whole network, the values will all be equal to the average # correlation across the observed matrix. # # We can then correlate each by-cluster matrix with the observed # correlation matrix to see how well the by-cluster matrix fits # the data. We'll store the correlation for each number of # clusters in a vector, which we can then plot. # First, we initialize a vector for storing the correlations and # set a variable for our number of vertices. clustered_observed_cors = vector() num_vertices = length(V(krack_reports_to)) # Next, we loop through the different possible cluster # configurations, produce matrices of within- and between- # cluster correlations, and correlate these by-cluster matrices # with the observed correlation matrix. # pdf("6.3_m182_studentnet_task_social_clustered_observed_corrs.pdf") clustered_observed_cors <-clustConfigurations(num_vertices, krack_reports_to_advice_hclust, krack_reports_to_advice_cors) clustered_observed_cors plot(clustered_observed_cors$correlations) # dev.off() clustered_observed_cors$correlations # From a visual inspection of the correlation matrix, we can # decide on the proper number of clusters in this network. # For this network, we'll use 4. (Note that the 1-cluster # solution doesn't appear on the plot because its correlation # with the observed correlation matrix is undefined.) num_clusters = 4 clusters <- cutree(krack_reports_to_advice_hclust, k = num_clusters) clusters cluster_cor_mat <- clusterCorr(krack_reports_to_advice_cors, clusters) cluster_cor_mat # Let's look at the correlation between this cluster configuration # and the observed correlation matrix. This should match the # corresponding value from clustered_observed_cors above. gcor(cluster_cor_mat, krack_reports_to_advice_cors)
##################### # Questions: # (1) What rationale do you have for selecting the number of # clusters / positions that you do? ##################### ### NOTE ON DEDUCTIVE CLUSTERING # It's pretty straightforward, using the code above, to explore # your own deductive NetCluster. Simply supply your own cluster # vector, where the elements in the vector are in the same order # as the vertices in the matrix, and the values represent the # cluster to which each vertex belongs. # # For example, if you believed that actors 2, 7, and 8 formed one # group, actor 16 former another group, and everyone else formed # a third group, you could represent this as follows: deductive_clusters = c(1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3) # You could then examine the fitness of this cluster configuration # as follows: deductive_cluster_cor_mat <- generate_cluster_cor_mat( krack_reports_to_advice_cors, deductive_clusters) deductive_cluster_cor_mat gcor(deductive_cluster_cor_mat, krack_reports_to_advice_cors) ### END NOTE ON DEDUCTIVE CLUSTERING # Now we'll use the 4-cluster solution to generate blockmodels, # using the raw tie data from the underlying task and social # networks. # Task valued task_mean <- mean(as.matrix(krack_reports_to_matrix_row_to_col)_ task_mean task_valued_blockmodel <- blockmodel(krack_reports_to_matrix_row_to_col, clusters) task_valued_blockmodel # Task binary task_density <- graph.density(krack_reports_to) task_density task_binary_blockmodel <- blockmodel(as.matrix(krack_reports_to_matrix_row_to_col_bin), clusters) task_binary_blockmodel # Social valued advice_mean <- mean(as.matrix(krack_advice_matrix_row_to_col)) advice_mean advice_valued_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col), clusters) advice_valued_blockmodel # Social binary advice_density <- graph.density(krack_advice) advice_density advice_binary_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col_bin), clusters) advice_binary_blockmodel # We can also permute the network to examine the within- and # between-cluster correlations. cluster_cor_mat_per <- permute_matrix(clusters, cluster_cor_mat) cluster_cor_mat_per ##################### # Questions: # (2) What is the story you get from viewing these clusters, # and their within and between cluster densities on task and # social interaction? What can you say about M182 from this? #####################
##################### # Questions: # (3) What does clustering of the triadic census afford us? # What roles do you see? Redo the initial blockmodel analysis # without social interaction (only task) and then compare to # this solution. Do they differ? # # Extra credit: Try running the triad census on task AND # social interaction separately and then correlating persons. # What result do you get? Is it different from our initial # blockmodel result? Show your code. ###################### ### # 5. FACTOR ANALYSIS ### # Note that although we are conducting a principal components # analysis (PCA), which is technically not exactly the same as # factor analysis, we will use the term "factor" to describe the # individual components in our PCA. # PCA is often used in network analysis as a form of detecting # individuals global positioning. We say "global" because these # clusters aren't defined on local cohesion but from the overall # pattern of ties individuals have with all others (structural # equivalence). Identifying the first two largest components that # organize the variance in tie patterns is one way of doing this. # We'll analyze the 4n x n matrix generated above. # First, we want to determine the ideal number of components # (factors) to extract. We'll do this by examining the eigenvalues # in a scree plot and examining how each number of factors stacks # up to a few proposed non-graphical solutions to selecting the # optimal number of components, available via the nFactors # package. ev <- eigen(cor(as.matrix(krack_reports_to_advice_matrix))) # get eigenvalues ap <- parallel(subject=nrow(krack_reports_to_advice_matrix), var=ncol(krack_reports_to_advice_matrix), rep=100,cent=.05) nS <- nScree(ev$values, ap$eigen$qevpea) # pdf("6.6_m182_studentnet_task_social_pca_scree.pdf") plotnScree(nS) # To draw a line across the graph where eigenvalues are = 1, # use the following code: plotnScree(nS) abline(h=1) # dev.off() # For more information on this procedure, please see # the references provided in the parallel() documentation # (type "?parallel" in the R command line with the package # loaded). # Now we'll run a principal components analysis on the matrix, # using the number of factors determined above (note this may not # be the same number as you get): pca_krack_reports_to_advice = principal(as.matrix(krack_reports_to_advice_matrix), nfactors=5, rotate="varimax") # Let's take a look at the results in the R terminal: pca_krack_reports_to_advice # You can see the standardized loadings for each factor for each # node. Note that R sometimes puts the factors in a funky order # (e.g. RC1, RC2, RC5, RC4, RC3) but all of the factors are there. # You can see that the SS loadings, proportion of variance # explained and cumulative variance explained is provided below. A # Chi Square test of the factors and various other statistics are # provided below. # Note that the eigenvalues can be accessed via the following # command: pca_krack_reports_to_advice$values # Now we will use the factor loadings to cluster and compare that # to our other NetCluster techniques, using dendrograms. # Take the distance based on Euclidian Distance krack_reports_to_factor_dist = dist(pca_krack_reports_to_advice$loadings) # And cluster krack_reports_to_factor_hclust <- hclust(krack_reports_to_factor_dist) # pdf("6.7_m182_studentnet_task_social_pca_hclust.pdf") plot(krack_reports_to_factor_hclust) # dev.off() # And compare to NetCluster based on correlations and triads: # pdf("6.8_m182_task_cluster_by_correlation_PCA_Triads.pdf") par(mfrow = c(1,2)) plot(krack_reports_to_advice_hclust, main = "Correlation") plot(krack_reports_to_factor_hclust, main = "PCA") # plot(m182_task_triad_hclust, main = "Triads") par(mfrow = c(1,1)) # dev.off() ##################### # Questions: # (4) How do the results across blockmodel techniques differ? # Why might you use one over the other? Why might you want to # run more than one in your analyses? #####################
Analysis based on friendship and advice data
preparation
install.packages("NetData") # install.packages("igraph") library(NetData) library(igraph) data(package="NetData") data(kracknets, package = "NetData") head(krack_full_data_frame)
> head(krack_full_data_frame) ego alter advice_tie friendship_tie reports_to_tie 1 1 1 0 0 0 2 1 2 1 1 1 3 1 3 0 0 0 4 1 4 1 1 0 5 1 5 0 0 0 6 1 6 0 0 0 >
krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0)) head(krack_full_nonzero_edges)
> krack_full_nonzero_edges <- subset(krack_full_data_frame, (friendship_tie > 0 | advice_tie > 0 | reports_to_tie > 0)) > head(krack_full_nonzero_edges) ego alter advice_tie friendship_tie reports_to_tie 2 1 2 1 1 1 4 1 4 1 1 0 8 1 8 1 1 0 12 1 12 0 1 0 16 1 16 1 1 0 18 1 18 1 0 0 >
subset function은 1 10 0 0 0
와 같은 데이터 열을 제외하려고 사용
################################################# # data frame 형식의 krack_full_nonzero_edges # (원 데이터가 data.frame형식의 # krack_full_data_frame이었음)을 # igraph 포맷의 graph로 변환함 (graph.data.frame) ################################################# krack_full <- graph.data.frame(krack_full_nonzero_edges) summary(krack_full)
> krack_full <- graph.data.frame(krack_full_nonzero_edges) > summary(krack_full) IGRAPH 750f8b3 DN-- 21 232 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), reports_to_tie (e/n) >
extracting friend, advice, reports_to graph
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0]) summary(krack_friend) krack_friend[] krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0]) summary(krack_advice) krack_advice[] krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0]) summary(krack_reports_to) krack_reports_to[]
krack_friend <- delete.edges(krack_full, E(krack_full)[E(krack_full)$friendship_tie==0]) > summary(krack_friend) IGRAPH 9c78e3a DN-- 21 102 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_friend[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . . 2 1 . . . . . . . . . . . . . . . . 1 . . 1 3 . . . . . . . . . . . . . 1 . . . . 1 . . 4 1 1 . . . . . 1 . . . 1 . . . 1 1 . . . . 5 . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1 6 . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . 1 . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . 10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 . 11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . . 12 1 . . 1 . . . . . . . . . . . . 1 . . . 1 13 . . . . 1 . . . . . 1 . . . . . . . . . . 14 . . . . . . 1 . . . . . . . 1 . . . . . . 15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . . 16 1 1 . . . . . . . . . . . . . . . . . . . 17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1 18 . 1 . . . . . . . . . . . . . . . . . . . 19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 . 20 . . . . . . . . . . 1 . . . . . . 1 . . . 21 . 1 . . . . . . . . . 1 . . . . 1 1 . . . > > krack_advice <- delete.edges(krack_full, E(krack_full)[E(krack_full)$advice_tie==0]) > summary(krack_advice) IGRAPH 9c7adf4 DN-- 21 190 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_advice[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1 2 . . . . . 1 1 . . . . . . . . . . . . . 1 3 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1 4 1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1 5 1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 6 . . . . . . . . . . . . . . . . . . . . 1 7 . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1 8 . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 9 1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1 10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 . 11 1 1 . . . . 1 . . . . . . . . . . . . . . 12 . . . . . . 1 . . . . . . . . . . . . . 1 13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . . 14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 16 1 1 . . . . . . . 1 . . . . . . . 1 . . . 17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1 18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1 19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 . 20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1 21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 . > > krack_reports_to <- delete.edges(krack_full, E(krack_full)[E(krack_full)$reports_to_tie==0]) > summary(krack_reports_to) IGRAPH 9c7cb3e DN-- 21 20 -- + attr: name (v/c), advice_tie (e/n), friendship_tie (e/n), | reports_to_tie (e/n) > krack_reports_to[] 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . . . . . . . . . . . . . . . . . . . 2 . . . . . . 1 . . . . . . . . . . . . . . 3 . . . . . . . . . . . . . 1 . . . . . . . 4 . 1 . . . . . . . . . . . . . . . . . . . 5 . . . . . . . . . . . . . 1 . . . . . . . 6 . . . . . . . . . . . . . . . . . . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . . . . . . . . . . . . . . . . . . 1 9 . . . . . . . . . . . . . 1 . . . . . . . 10 . . . . . . . . . . . . . . . . . 1 . . . 11 . . . . . . . . . . . . . . . . . 1 . . . 12 . . . . . . . . . . . . . . . . . . . . 1 13 . . . . . . . . . . . . . 1 . . . . . . . 14 . . . . . . 1 . . . . . . . . . . . . . . 15 . . . . . . . . . . . . . 1 . . . . . . . 16 . 1 . . . . . . . . . . . . . . . . . . . 17 . . . . . . . . . . . . . . . . . . . . 1 18 . . . . . . 1 . . . . . . . . . . . . . . 19 . . . . . . . . . . . . . 1 . . . . . . . 20 . . . . . . . . . . . . . 1 . . . . . . . 21 . . . . . . 1 . . . . . . . . . . . . . . >
Visualization of the three (friend, advice, reports_to)
Note that reports to graph looks extremely formal.
par(mfrow = c(1,3)) krack_friend_layout <- layout.fruchterman.reingold(krack_friend) plot(krack_friend, layout=krack_friend_layout, main = "friend", edge.arrow.size=.5) krack_advice_layout <- layout.fruchterman.reingold(krack_advice) plot(krack_advice, layout=krack_advice_layout, main = "advice", edge.arrow.size=.5) krack_reports_to_layout <- layout.fruchterman.reingold(krack_reports_to) plot(krack_reports_to, layout=krack_reports_to_layout, main = "reports to", edge.arrow.size=.5) par(mfrow = c(1,1))
Two data sets (friend and advice), for friend
# We'll use the "task" and "social" sub-graphs together as the # basis for our structural equivalence methods. First, we'll use # the task graph to generate an adjacency matrix. # # This matrix represents task interactions directed FROM the # row individual TO the column individual. krack_friend_matrix_row_to_col <- get.adjacency(krack_friend, attr='friendship_tie') krack_friend_matrix_row_to_col # To operate on a binary graph, simply leave off the "attr" # parameter: krack_friend_matrix_row_to_col_bin <- get.adjacency(krack_friend) krack_friend_matrix_row_to_col_bin # For this lab, we'll use the valued graph. The next step is to # concatenate it with its transpose in order to capture both # incoming and outgoing task interactions. krack_friend_matrix_col_to_row <- t(as.matrix(krack_friend_matrix_row_to_col)) krack_friend_matrix_col_to_row krack_friend_matrix <- rbind(krack_friend_matrix_row_to_col, krack_friend_matrix_col_to_row) krack_friend_matrix
> krack_friend_matrix_row_to_col <- get.adjacency(krack_friend, attr='friendship_tie') > krack_friend_matrix_row_to_col 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . . 2 1 . . . . . . . . . . . . . . . . 1 . . 1 3 . . . . . . . . . . . . . 1 . . . . 1 . . 4 1 1 . . . . . 1 . . . 1 . . . 1 1 . . . . 5 . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1 6 . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . 1 . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . 10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 . 11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . . 12 1 . . 1 . . . . . . . . . . . . 1 . . . 1 13 . . . . 1 . . . . . 1 . . . . . . . . . . 14 . . . . . . 1 . . . . . . . 1 . . . . . . 15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . . 16 1 1 . . . . . . . . . . . . . . . . . . . 17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1 18 . 1 . . . . . . . . . . . . . . . . . . . 19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 . 20 . . . . . . . . . . 1 . . . . . . 1 . . . 21 . 1 . . . . . . . . . 1 . . . . 1 1 . . . > > # To operate on a binary graph, simply leave off the "attr" > # parameter: > krack_friend_matrix_row_to_col_bin <- get.adjacency(krack_friend) > krack_friend_matrix_row_to_col_bin 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . . 2 1 . . . . . . . . . . . . . . . . 1 . . 1 3 . . . . . . . . . . . . . 1 . . . . 1 . . 4 1 1 . . . . . 1 . . . 1 . . . 1 1 . . . . 5 . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1 6 . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . 1 . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . 10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 . 11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . . 12 1 . . 1 . . . . . . . . . . . . 1 . . . 1 13 . . . . 1 . . . . . 1 . . . . . . . . . . 14 . . . . . . 1 . . . . . . . 1 . . . . . . 15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . . 16 1 1 . . . . . . . . . . . . . . . . . . . 17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1 18 . 1 . . . . . . . . . . . . . . . . . . . 19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 . 20 . . . . . . . . . . 1 . . . . . . 1 . . . 21 . 1 . . . . . . . . . 1 . . . . 1 1 . . . > > # For this lab, we'll use the valued graph. The next step is to > # concatenate it with its transpose in order to capture both > # incoming and outgoing task interactions. > krack_friend_matrix_col_to_row <- t(as.matrix(krack_friend_matrix_row_to_col)) > krack_friend_matrix_col_to_row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 0 1 0 1 0 0 0 0 0 0 1 1 0 0 1 1 1 0 1 0 0 2 1 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 1 1 1 0 1 3 0 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 1 0 1 0 0 4 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 0 5 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 8 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 9 0 0 0 0 1 1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 11 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 1 0 1 1 0 12 1 0 0 1 0 1 0 0 0 1 1 0 0 0 0 0 1 0 1 0 1 13 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 14 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 15 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 0 16 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 17 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 18 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 19 0 0 1 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 20 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0 21 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 > > krack_friend_matrix <- rbind(krack_friend_matrix_row_to_col, krack_friend_matrix_col_to_row) > krack_friend_matrix 42 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . 1 . . . 1 . . . . . 2 1 . . . . . . . . . . . . . . . . 1 . . 1 3 . . . . . . . . . . . . . 1 . . . . 1 . . 4 1 1 . . . . . 1 . . . 1 . . . 1 1 . . . . 5 . 1 . . . . . . 1 . 1 . . 1 . . 1 . 1 . 1 6 . 1 . . . . 1 . 1 . . 1 . . . . 1 . . . 1 7 . . . . . . . . . . . . . . . . . . . . . 8 . . . 1 . . . . . . . . . . . . . . . . . 9 . . . . . . . . . . . . . . . . . . . . . 10 . . 1 . 1 . . 1 1 . . 1 . . . 1 . . . 1 . 11 1 1 1 1 1 . . 1 1 . . 1 1 . 1 . 1 1 1 . . 12 1 . . 1 . . . . . . . . . . . . 1 . . . 1 13 . . . . 1 . . . . . 1 . . . . . . . . . . 14 . . . . . . 1 . . . . . . . 1 . . . . . . 15 1 . 1 . 1 1 . . 1 . 1 . . 1 . . . . 1 . . 16 1 1 . . . . . . . . . . . . . . . . . . . 17 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 . . 1 1 1 18 . 1 . . . . . . . . . . . . . . . . . . . 19 1 1 1 . 1 . . . . . 1 1 . 1 1 . . . . 1 . 20 . . . . . . . . . . 1 . . . . . . 1 . . . 21 . 1 . . . . . . . . . 1 . . . . 1 1 . . . 1 . 1 . 1 . . . . . . 1 1 . . 1 1 1 . 1 . . 2 1 . . 1 1 1 . . . . 1 . . . . 1 1 1 1 . 1 3 . . . . . . . . . 1 1 . . . 1 . 1 . 1 . . 4 1 . . . . . . 1 . . 1 1 . . . . 1 . . . . 5 . . . . . . . . . 1 1 . 1 . 1 . 1 . 1 . . 6 . . . . . . . . . . . . . . 1 . 1 . . . . 7 . . . . . 1 . . . . . . . 1 . . 1 . . . . 8 1 . . 1 . . . . . 1 1 . . . . . 1 . . . . 9 . . . . 1 1 . . . 1 1 . . . 1 . 1 . . . . 10 . . . . . . . . . . . . . . . . 1 . . . . 11 . . . . 1 . . . . . . . 1 . 1 . 1 . 1 1 . 12 1 . . 1 . 1 . . . 1 1 . . . . . 1 . 1 . 1 13 . . . . . . . . . . 1 . . . . . . . . . . 14 . . 1 . 1 . . . . . . . . . 1 . 1 . 1 . . 15 . . . . . . . . . . 1 . . 1 . . 1 . 1 . . 16 1 . . 1 . . . . . 1 . . . . . . 1 . . . . 17 . . . 1 1 1 . . . . 1 1 . . . . . . . . 1 18 . 1 . . . . . . . . 1 . . . . . . . . 1 1 19 . . 1 . 1 . . . . . 1 . . . 1 . 1 . . . . 20 . . . . . . . . . 1 . . . . . . 1 . 1 . . 21 . 1 . . 1 1 . . . . . 1 . . . . 1 . . . . > >
for advice matrix
# Next, we'll use the same procedure to add social-interaction # information. krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie') krack_advice_matrix_row_to_col krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice) krack_advice_matrix_row_to_col_bin krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col)) krack_advice_matrix_col_to_row krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row) krack_advice_matrix
> krack_advice_matrix_row_to_col <- get.adjacency(krack_advice, attr='advice_tie') > krack_advice_matrix_row_to_col 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1 2 . . . . . 1 1 . . . . . . . . . . . . . 1 3 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1 4 1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1 5 1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 6 . . . . . . . . . . . . . . . . . . . . 1 7 . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1 8 . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 9 1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1 10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 . 11 1 1 . . . . 1 . . . . . . . . . . . . . . 12 . . . . . . 1 . . . . . . . . . . . . . 1 13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . . 14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 16 1 1 . . . . . . . 1 . . . . . . . 1 . . . 17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1 18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1 19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 . 20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1 21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 . > > krack_advice_matrix_row_to_col_bin <- get.adjacency(krack_advice) > krack_advice_matrix_row_to_col_bin 21 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1 2 . . . . . 1 1 . . . . . . . . . . . . . 1 3 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1 4 1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1 5 1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 6 . . . . . . . . . . . . . . . . . . . . 1 7 . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1 8 . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 9 1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1 10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 . 11 1 1 . . . . 1 . . . . . . . . . . . . . . 12 . . . . . . 1 . . . . . . . . . . . . . 1 13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . . 14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 16 1 1 . . . . . . . 1 . . . . . . . 1 . . . 17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1 18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1 19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 . 20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1 21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 . > > krack_advice_matrix_col_to_row <- t(as.matrix(krack_advice_matrix_row_to_col)) > krack_advice_matrix_col_to_row 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 2 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 4 1 0 1 0 0 0 0 1 0 1 0 0 0 0 1 0 1 1 0 0 1 5 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 1 0 0 6 0 1 1 1 1 0 1 1 1 0 0 0 0 0 1 0 0 0 0 1 1 7 0 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 1 8 1 0 1 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 9 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 10 0 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 0 1 1 0 0 11 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 1 1 1 0 12 0 0 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1 1 13 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 14 0 0 1 0 1 0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 1 15 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 16 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 0 17 0 0 1 1 1 0 1 0 1 1 0 0 0 0 1 0 0 0 0 1 1 18 1 0 1 1 1 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 19 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 1 0 0 0 20 0 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 1 1 0 1 21 1 1 1 1 1 1 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 > > krack_advice_matrix <- rbind(krack_advice_matrix_row_to_col, krack_advice_matrix_col_to_row) > krack_advice_matrix 42 x 21 sparse Matrix of class "dgCMatrix" [[ suppressing 21 column names ‘1’, ‘2’, ‘3’ ... ]] 1 . 1 . 1 . . . 1 . . . . . . . 1 . 1 . . 1 2 . . . . . 1 1 . . . . . . . . . . . . . 1 3 1 1 . 1 . 1 1 1 1 1 1 1 . 1 . . 1 1 . 1 1 4 1 1 . . . 1 . 1 . 1 1 1 . . . 1 1 1 . 1 1 5 1 1 . . . 1 1 1 . 1 1 . 1 1 . 1 1 1 1 1 1 6 . . . . . . . . . . . . . . . . . . . . 1 7 . 1 . . . 1 . . . . 1 1 . 1 . . 1 1 . . 1 8 . 1 . 1 . 1 1 . . 1 1 . . . . . . 1 . . 1 9 1 1 . . . 1 1 1 . 1 1 1 . 1 . 1 1 1 . . 1 10 1 1 1 1 1 . . 1 . . 1 . 1 . 1 1 1 1 1 1 . 11 1 1 . . . . 1 . . . . . . . . . . . . . . 12 . . . . . . 1 . . . . . . . . . . . . . 1 13 1 1 . . 1 . . . 1 . . . . 1 . . . 1 . . . 14 . 1 . . . . 1 . . . . . . . . . . 1 . . 1 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 . 1 1 1 1 1 1 16 1 1 . . . . . . . 1 . . . . . . . 1 . . . 17 1 1 . 1 . . 1 . . . . . . . . . . . . . 1 18 1 1 1 1 1 . 1 1 1 1 1 . 1 1 1 1 . . 1 1 1 19 1 1 1 . 1 . 1 . . 1 1 . . 1 1 . . 1 . 1 . 20 1 1 . . . 1 . 1 . . 1 1 . 1 1 1 1 1 . . 1 21 . 1 1 1 . 1 1 1 . . . 1 . 1 . . 1 1 . 1 . 1 . . 1 1 1 . . . 1 1 1 . 1 . 1 1 1 1 1 1 . 2 1 . 1 1 1 . 1 1 1 1 1 . 1 1 1 1 1 1 1 1 1 3 . . . . . . . . . 1 . . . . 1 . . 1 1 . 1 4 1 . 1 . . . . 1 . 1 . . . . 1 . 1 1 . . 1 5 . . . . . . . . . 1 . . 1 . 1 . . 1 1 . . 6 . 1 1 1 1 . 1 1 1 . . . . . 1 . . . . 1 1 7 . 1 1 . 1 . . 1 1 . 1 1 . 1 1 . 1 1 1 . 1 8 1 . 1 1 1 . . . 1 1 . . . . 1 . . 1 . 1 1 9 . . 1 . . . . . . . . . 1 . 1 . . 1 . . . 10 . . 1 1 1 . . 1 1 . . . . . 1 1 . 1 1 . . 11 . . 1 1 1 . 1 1 1 1 . . . . 1 . . 1 1 1 . 12 . . 1 1 . . 1 . 1 . . . . . 1 . . . . 1 1 13 . . . . 1 . . . . 1 . . . . 1 . . 1 . . . 14 . . 1 . 1 . 1 . 1 . . . 1 . 1 . . 1 1 1 1 15 . . . . . . . . . 1 . . . . . . . 1 1 1 . 16 1 . . 1 1 . . . 1 1 . . . . 1 . . 1 . 1 . 17 . . 1 1 1 . 1 . 1 1 . . . . 1 . . . . 1 1 18 1 . 1 1 1 . 1 1 1 1 . . 1 1 1 1 . . 1 1 1 19 . . . . 1 . . . . 1 . . . . 1 . . 1 . . . 20 . . 1 1 1 . . . . 1 . . . . 1 . . 1 1 . 1 21 1 1 1 1 1 1 1 1 1 . . 1 . 1 1 . 1 1 . 1 . >
combining the two (friend and advice)
# combine the two with rbind function krack_friend_advice_matrix <- rbind(krack_friend_matrix, krack_advice_matrix) krack_friend_advice_matrix
correlation matrix out of the combined matrix (friend and advice)
# Now we have a single 4n x n matrix that represents both in- and # out-directed task and social communication. From this, we can # generate an n x n correlation matrix that shows the degree of # structural equivalence of each actor in the network. krack_friend_advice_cors <- cor(as.matrix(krack_friend_advice_matrix)) krack_friend_to_advice_cors # To use correlation values in hierarchical NetCluster, they must # first be coerced into a "dissimilarity structure" using dist(). # We subtract the values from 1 so that they are all greater than # or equal to 0; thus, highly dissimilar (i.e., negatively # correlated) actors have higher values. dissimilarity <- 1 - krack_reports_to_advice_cors krack_reports_to_dist <- as.dist(dissimilarity) krack_reports_to_dist # Note that it is also possible to use dist() directly on the # matrix. However, since cor() looks at associations between # columns and dist() looks at associations between rows, it is # necessary to transpose the matrix first. # # A variety of distance metrics are available; Euclidean # is the default. #m182_task_social_dist <- dist(t(m182_task_social_matrix)) #m182_task_social_dist # hclust() performs a hierarchical agglomerative NetCluster # operation based on the values in the dissimilarity matrix # yielded by as.dist() above. The standard visualization is a # dendrogram. By default, hclust() agglomerates clusters via a # "complete linkakage" algorithm, determining cluster proximity # by looking at the distance of the two points across clusters # that are farthest away from one another. This can be changed via # the "method" parameter. krack_reports_to_advice_hclust <- hclust(krack_reports_to_dist) plot(krack_reports_to_advice_hclust) # cutree() allows us to use the output of hclust() to set # different numbers of clusters and assign vertices to clusters # as appropriate. For example: cutree(krack_reports_to_advice_hclust, k=2) # Now we'll try to figure out the number of clusters that best # describes the underlying data. To do this, we'll loop through # all of the possible numbers of clusters (1 through n, where n is # the number of actors in the network). For each solution # corresponding to a given number of clusters, we'll use cutree() # to assign the vertices to their respective clusters # corresponding to that solution. # # From this, we can generate a matrix of within- and between- # cluster correlations. Thus, when there is one cluster for each # vertex in the network, the cell values will be identical to the # observed correlation matrix, and when there is one cluster for # the whole network, the values will all be equal to the average # correlation across the observed matrix. # # We can then correlate each by-cluster matrix with the observed # correlation matrix to see how well the by-cluster matrix fits # the data. We'll store the correlation for each number of # clusters in a vector, which we can then plot. # First, we initialize a vector for storing the correlations and # set a variable for our number of vertices. clustered_observed_cors = vector() num_vertices = length(V(krack_reports_to)) # Next, we loop through the different possible cluster # configurations, produce matrices of within- and between- # cluster correlations, and correlate these by-cluster matrices # with the observed correlation matrix. # pdf("6.3_m182_studentnet_task_social_clustered_observed_corrs.pdf") clustered_observed_cors <-clustConfigurations(num_vertices, krack_reports_to_advice_hclust, krack_reports_to_advice_cors) clustered_observed_cors plot(clustered_observed_cors$correlations) # dev.off() clustered_observed_cors$correlations # From a visual inspection of the correlation matrix, we can # decide on the proper number of clusters in this network. # For this network, we'll use 4. (Note that the 1-cluster # solution doesn't appear on the plot because its correlation # with the observed correlation matrix is undefined.) num_clusters = 4 clusters <- cutree(krack_reports_to_advice_hclust, k = num_clusters) clusters cluster_cor_mat <- clusterCorr(krack_reports_to_advice_cors, clusters) cluster_cor_mat # Let's look at the correlation between this cluster configuration # and the observed correlation matrix. This should match the # corresponding value from clustered_observed_cors above. gcor(cluster_cor_mat, krack_reports_to_advice_cors) ##################### # Questions: # (1) What rationale do you have for selecting the number of # clusters / positions that you do? ##################### ### NOTE ON DEDUCTIVE CLUSTERING # It's pretty straightforward, using the code above, to explore # your own deductive NetCluster. Simply supply your own cluster # vector, where the elements in the vector are in the same order # as the vertices in the matrix, and the values represent the # cluster to which each vertex belongs. # # For example, if you believed that actors 2, 7, and 8 formed one # group, actor 16 former another group, and everyone else formed # a third group, you could represent this as follows: deductive_clusters = c(1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 3) # You could then examine the fitness of this cluster configuration # as follows: deductive_cluster_cor_mat <- generate_cluster_cor_mat( krack_reports_to_advice_cors, deductive_clusters) deductive_cluster_cor_mat gcor(deductive_cluster_cor_mat, krack_reports_to_advice_cors) ### END NOTE ON DEDUCTIVE CLUSTERING # Now we'll use the 4-cluster solution to generate blockmodels, # using the raw tie data from the underlying task and social # networks. # Task valued task_mean <- mean(as.matrix(krack_reports_to_matrix_row_to_col)_ task_mean task_valued_blockmodel <- blockmodel(krack_reports_to_matrix_row_to_col, clusters) task_valued_blockmodel # Task binary task_density <- graph.density(krack_reports_to) task_density task_binary_blockmodel <- blockmodel(as.matrix(krack_reports_to_matrix_row_to_col_bin), clusters) task_binary_blockmodel # Social valued advice_mean <- mean(as.matrix(krack_advice_matrix_row_to_col)) advice_mean advice_valued_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col), clusters) advice_valued_blockmodel # Social binary advice_density <- graph.density(krack_advice) advice_density advice_binary_blockmodel <- blockmodel(as.matrix(krack_advice_matrix_row_to_col_bin), clusters) advice_binary_blockmodel # We can also permute the network to examine the within- and # between-cluster correlations. cluster_cor_mat_per <- permute_matrix(clusters, cluster_cor_mat) cluster_cor_mat_per ##################### # Questions: # (2) What is the story you get from viewing these clusters, # and their within and between cluster densities on task and # social interaction? What can you say about M182 from this? ##################### ##################### # Questions: # (3) What does clustering of the triadic census afford us? # What roles do you see? Redo the initial blockmodel analysis # without social interaction (only task) and then compare to # this solution. Do they differ? # # Extra credit: Try running the triad census on task AND # social interaction separately and then correlating persons. # What result do you get? Is it different from our initial # blockmodel result? Show your code. ###################### ### # 5. FACTOR ANALYSIS ### # Note that although we are conducting a principal components # analysis (PCA), which is technically not exactly the same as # factor analysis, we will use the term "factor" to describe the # individual components in our PCA. # PCA is often used in network analysis as a form of detecting # individuals global positioning. We say "global" because these # clusters aren't defined on local cohesion but from the overall # pattern of ties individuals have with all others (structural # equivalence). Identifying the first two largest components that # organize the variance in tie patterns is one way of doing this. # We'll analyze the 4n x n matrix generated above. # First, we want to determine the ideal number of components # (factors) to extract. We'll do this by examining the eigenvalues # in a scree plot and examining how each number of factors stacks # up to a few proposed non-graphical solutions to selecting the # optimal number of components, available via the nFactors # package. ev <- eigen(cor(as.matrix(krack_reports_to_advice_matrix))) # get eigenvalues ap <- parallel(subject=nrow(krack_reports_to_advice_matrix), var=ncol(krack_reports_to_advice_matrix), rep=100,cent=.05) nS <- nScree(ev$values, ap$eigen$qevpea) # pdf("6.6_m182_studentnet_task_social_pca_scree.pdf") plotnScree(nS) # To draw a line across the graph where eigenvalues are = 1, # use the following code: plotnScree(nS) abline(h=1) # dev.off() # For more information on this procedure, please see # the references provided in the parallel() documentation # (type "?parallel" in the R command line with the package # loaded). # Now we'll run a principal components analysis on the matrix, # using the number of factors determined above (note this may not # be the same number as you get): pca_krack_reports_to_advice = principal(as.matrix(krack_reports_to_advice_matrix), nfactors=5, rotate="varimax") # Let's take a look at the results in the R terminal: pca_krack_reports_to_advice # You can see the standardized loadings for each factor for each # node. Note that R sometimes puts the factors in a funky order # (e.g. RC1, RC2, RC5, RC4, RC3) but all of the factors are there. # You can see that the SS loadings, proportion of variance # explained and cumulative variance explained is provided below. A # Chi Square test of the factors and various other statistics are # provided below. # Note that the eigenvalues can be accessed via the following # command: pca_krack_reports_to_advice$values # Now we will use the factor loadings to cluster and compare that # to our other NetCluster techniques, using dendrograms. # Take the distance based on Euclidian Distance krack_reports_to_factor_dist = dist(pca_krack_reports_to_advice$loadings) # And cluster krack_reports_to_factor_hclust <- hclust(krack_reports_to_factor_dist) # pdf("6.7_m182_studentnet_task_social_pca_hclust.pdf") plot(krack_reports_to_factor_hclust) # dev.off() # And compare to NetCluster based on correlations and triads: # pdf("6.8_m182_task_cluster_by_correlation_PCA_Triads.pdf") par(mfrow = c(1,2)) plot(krack_reports_to_advice_hclust, main = "Correlation") plot(krack_reports_to_factor_hclust, main = "PCA") # plot(m182_task_triad_hclust, main = "Triads") par(mfrow = c(1,1)) # dev.off() ##################### # Questions: # (4) How do the results across blockmodel techniques differ? # Why might you use one over the other? Why might you want to # run more than one in your analyses? #####################
krackhardt_datasets.1575415161.txt.gz · Last modified: 2019/12/04 08:19 by hkimscil