hierarchical_clusterring_analysis
                Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| hierarchical_clusterring_analysis [2024/11/21 14:13] – hkimscil | hierarchical_clusterring_analysis [2024/11/21 14:16] (current) – hkimscil | ||
|---|---|---|---|
| Line 1: | Line 1: | ||
| - | Euclidian distance Distance | + | SA https:// | 
| - | Manhattan distance (City-block) Distance | + | |
| - | Correlation Distance | + | |
| - | Eisen Cosine Correlation Distance | + | |
| - | Kendal Distance | + | |
| - | \begin{eqnarray*} | + | Cluster distance | 
| + | * Single | ||
| + | * Complete | ||
| + | * Average | ||
| + | * Centroid | ||
| + | |||
| + | Method to get distance | ||
| + | * Euclidian distance Distance | ||
| + | * Manhattan distance (City-block) Distance | ||
| + | * Correlation Distance | ||
| + | * Eisen Cosine Correlation Distance | ||
| + | * Kendal Distance | ||
| + | |||
| + | |||
| + | \begin{eqnarray*} | ||
| d_{euc} (x, y) & = & \sqrt{ \sum_{i=1}^{n}(x_{i} - y_{i})^2 } \\ | d_{euc} (x, y) & = & \sqrt{ \sum_{i=1}^{n}(x_{i} - y_{i})^2 } \\ | ||
| d_{man} (x, y) & = & \sum_{i=1}^{n} | (x_{i} - y_{i}) | \\ | d_{man} (x, y) & = & \sum_{i=1}^{n} | (x_{i} - y_{i}) | \\ | ||
hierarchical_clusterring_analysis.1732166017.txt.gz · Last modified:  by hkimscil
                
                