gradient_descent
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
gradient_descent [2025/08/21 15:53] – [How to unnormalize (unscale) a and b] hkimscil | gradient_descent [2025/08/21 16:24] (current) – [Gradient descend] hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Gradient Descent ====== | ====== Gradient Descent ====== | ||
- | ====== explanation ====== | ||
- | |||
====== R code: Idea ====== | ====== R code: Idea ====== | ||
< | < | ||
Line 541: | Line 539: | ||
& = & -2 X_i \sum{(Y_i - (a + bX_i))} \\ | & = & -2 X_i \sum{(Y_i - (a + bX_i))} \\ | ||
& = & -2 * X_i * \sum{\text{residual}} \\ | & = & -2 * X_i * \sum{\text{residual}} \\ | ||
- | \\ | + | & .. & -2 * X_i * \frac{\sum{\text{residual}}}{n} \\ |
+ | & = & -2 * \overline{X_i * \text{residual}} \\ | ||
\end{eqnarray*} | \end{eqnarray*} | ||
- | (미분을 이해한다는 것을 전제로) | + | 위의 설명은 Sum of Square값을 미분하는 것을 전제로 하였지만, |
< | < | ||
Line 1007: | Line 1007: | ||
& = & k + \frac{m * x}{\sigma} - \frac{m * \mu}{\sigma} | & = & k + \frac{m * x}{\sigma} - \frac{m * \mu}{\sigma} | ||
& = & k - \frac{m * \mu}{\sigma} + \frac{m * x}{\sigma} | & = & k - \frac{m * \mu}{\sigma} + \frac{m * x}{\sigma} | ||
- | & = & \underline{k - \frac{\mu}{\sigma} * m} + \underline{\frac{m}{\sigma}} * x \\ | + | & = & \underbrace{k - \frac{\mu}{\sigma} * m}_\text{ 1 } + \underbrace{\frac{m}{\sigma}}_\text{ 2 } * x \\ |
& & \text{therefore, | & & \text{therefore, | ||
a & = & k - \frac{\mu}{\sigma} * m \\ | a & = & k - \frac{\mu}{\sigma} * m \\ |
gradient_descent.1755759223.txt.gz · Last modified: 2025/08/21 15:53 by hkimscil