geometric_sequences_and_sums
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
geometric_sequences_and_sums [2021/10/22 14:25] – [with Infinite Series (n이 무한대일 때)] hkimscil | geometric_sequences_and_sums [2024/10/09 08:14] (current) – [with Infinite Series (n이 무한대일 때)] hkimscil | ||
---|---|---|---|
Line 48: | Line 48: | ||
X_{n} & = & ar^{(n-1)} \\ | X_{n} & = & ar^{(n-1)} \\ | ||
& & \text{where | & & \text{where | ||
- | & & \text{ | + | & & \text{ |
r^{(n-1)} & = & 0 \\ | r^{(n-1)} & = & 0 \\ | ||
\therefore \text{ | \therefore \text{ | ||
Line 99: | Line 99: | ||
\sum_{n=0}^{\infty}(ar^n) & = & a \cdot \frac {(1 - r^{n})}{1-r} \\ | \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \frac {(1 - r^{n})}{1-r} \\ | ||
& & \text{when } \\ | & & \text{when } \\ | ||
- | & & n -> \infty, |r| < 1, r \ne 0 \\ | + | & & n \rightarrow |
& & r^{n} = 0 \\ | & & r^{n} = 0 \\ | ||
\therefore \; \; \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \left(\frac{1}{1-r}\right) | \therefore \; \; \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \left(\frac{1}{1-r}\right) |
geometric_sequences_and_sums.1634880351.txt.gz · Last modified: 2021/10/22 14:25 by hkimscil