geometric_sequences_and_sums

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
geometric_sequences_and_sums [2021/10/22 14:24] – [with Infinite Series (n이 무한대일 때)] hkimscilgeometric_sequences_and_sums [2024/10/09 08:14] (current) – [with Infinite Series (n이 무한대일 때)] hkimscil
Line 48: Line 48:
 X_{n} & = & ar^{(n-1)} \\ X_{n} & = & ar^{(n-1)} \\
 & & \text{where  } -1 < r < +1 \\ & & \text{where  } -1 < r < +1 \\
-& & \text{  and  } n -> \infty \\ +& & \text{  and  } n \rightarrow \infty \\ 
 r^{(n-1)} & = & 0 \\ r^{(n-1)} & = & 0 \\
 \therefore \text{  } ar^{(n-1)} & = & 0 \\  \therefore \text{  } ar^{(n-1)} & = & 0 \\ 
Line 99: Line 99:
 \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \frac {(1 - r^{n})}{1-r} \\ \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \frac {(1 - r^{n})}{1-r} \\
 & & \text{when } \\  & & \text{when } \\ 
-& & n -> \infty, |r| < 1, r \ne 0  \\ +& & n \rightarrow \infty, \;\; |r| < 1, \;\; r \ne 0  \\ 
-r^{n} &  0 \\ +& & r^{n} = 0 \\ 
-\sum_{n=0}^{\infty}(ar^n) & = & a \cdot \left(\frac{1}{1-r}\right)+\therefore \; \; \sum_{n=0}^{\infty}(ar^n) & = & a \cdot \left(\frac{1}{1-r}\right)
 \end{eqnarray*} \end{eqnarray*}
  
geometric_sequences_and_sums.1634880247.txt.gz · Last modified: 2021/10/22 14:24 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki