expected_value_and_variance_properties
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
expected_value_and_variance_properties [2023/10/04 12:42] – [Theorems] hkimscil | expected_value_and_variance_properties [2023/12/07 12:18] (current) – [Theorem 2: Why square] hkimscil | ||
---|---|---|---|
Line 33: | Line 33: | ||
\begin{align*} | \begin{align*} | ||
- | Var[aX] & = & E[a^2X^2] − (E[aX])^2 \\ | + | Var[aX] & = E[a^2X^2] − (E[aX])^2 \\ |
- | & = & a^2 E[X^2] - (a E[X])^2 \\ | + | & = a^2 E[X^2] - (a E[X])^2 \\ |
- | & = & a^2 E[X^2] - (a^2 E[X]^2) \\ | + | & = a^2 E[X^2] - (a^2 E[X]^2) \\ |
- | & = & a^2 (E[X^2] - (E[X])^2) \\ | + | & = a^2 (E[X^2] - (E[X])^2) \\ |
- | & = & a^2 (Var[X]) \label{var.theorem.2} \tag{variance theorem 2} \\ | + | & = a^2 (Var[X]) \label{var.theorem.2} \tag{variance theorem 2} \\ |
\end{align*} | \end{align*} | ||
====== Theorem 3: Why Var[X+c] = Var[X] ====== | ====== Theorem 3: Why Var[X+c] = Var[X] ====== | ||
Line 153: | Line 153: | ||
보통 X1, X2 집합은 같은 특성을 (statistic) 갖는 두 독립적인 집합을 의미하므로 | 보통 X1, X2 집합은 같은 특성을 (statistic) 갖는 두 독립적인 집합을 의미하므로 | ||
\begin{align*} | \begin{align*} | ||
- | Var(X1 + X2) = Var(X1) + Var(X2) | + | Var(X1 + X2) = & Var(X1) + Var(X2) |
+ | & \text{because X1 and x2 have} \\ | ||
+ | & \text{X' | ||
+ | & \text{and variance of X)} \\ | ||
+ | |||
+ | = & Var(X) + Var(X) | ||
\end{align*} | \end{align*} | ||
Line 173: | Line 178: | ||
& \;\;\;\;\; \text{according to the below } \ref{cov.xx}, | & \;\;\;\;\; \text{according to the below } \ref{cov.xx}, | ||
& \;\;\;\;\; Cov(X,X) = Var(X) \\ | & \;\;\;\;\; Cov(X,X) = Var(X) \\ | ||
- | & = Var(X) + 2 Var(X) + Var(X) | + | & = Var(X) + 2 Var(X) + Var(X) |
& = 4 Var(X) | & = 4 Var(X) | ||
\end{align*} | \end{align*} | ||
Line 191: | Line 196: | ||
rnorm2 <- function(n, | rnorm2 <- function(n, | ||
- | m <- 0 | + | m <- 50 |
- | v <- 1 | + | v <- 4 |
- | n <- 10000 | + | n <- 100000 |
set.seed(1) | set.seed(1) | ||
x1 <- rnorm2(n, m, sqrt(v)) | x1 <- rnorm2(n, m, sqrt(v)) | ||
Line 199: | Line 204: | ||
x3 <- rnorm2(n, m, sqrt(v)) | x3 <- rnorm2(n, m, sqrt(v)) | ||
- | m.x1 <- mean(x1) | + | m.x1 <- round(mean(x1),3) |
- | m.x2 <- mean(x2) | + | m.x2 <- round(mean(x2),3) |
- | m.x3 <- mean(x3) | + | m.x3 <- round(mean(x3),3) |
m.x1 | m.x1 | ||
m.x2 | m.x2 | ||
m.x3 | m.x3 | ||
+ | |||
+ | y1 <- 3*x1 +5 | ||
+ | exp.y1 <- mean(y1) | ||
+ | exp.3xplus5 <- 3 * mean(x1) + 5 | ||
+ | exp.y1 | ||
+ | exp.3xplus5 | ||
v.x1 <- var(x1) | v.x1 <- var(x1) | ||
Line 212: | Line 223: | ||
v.x2 | v.x2 | ||
v.x3 | v.x3 | ||
+ | |||
+ | var(x1) | ||
+ | var((3*x1)+5) | ||
+ | 3^2 * var(x1) | ||
v.12 <- var(x1 + x2) | v.12 <- var(x1 + x2) |
expected_value_and_variance_properties.1696390975.txt.gz · Last modified: 2023/10/04 12:42 by hkimscil