User Tools

Site Tools


deriviation_of_a_and_b_in_a_simple_regression

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
deriviation_of_a_and_b_in_a_simple_regression [2025/08/05 06:19] hkimscilderiviation_of_a_and_b_in_a_simple_regression [2025/08/05 06:24] (current) hkimscil
Line 17: Line 17:
 \dfrac{\text{d}}{\text{da}} \sum{(Y_i - (a + bX_i))^2}  \dfrac{\text{d}}{\text{da}} \sum{(Y_i - (a + bX_i))^2} 
 & = & \sum \dfrac{\text{d}}{\text{da}} {(Y_i - (a + bX_i))^2} \\ & = & \sum \dfrac{\text{d}}{\text{da}} {(Y_i - (a + bX_i))^2} \\
-& & \because {(Y_i - (a + bX_i))^2} = residual^2 \\+& & \because {(Y_i - (a + bX_i))^2} = \text{residual}^2 \\
 & & \therefore{} \\ & & \therefore{} \\
-& = & \sum \dfrac{\text{dresidual^2}} {da}  \\ +& = & \sum \dfrac{\text{dresidual}^2} {da}  \\ 
-& = & \sum \dfrac{\text{dresidual^2}}{\text{dresidual}} * \dfrac{\text{dresidual}}{da} \\ +& = & \sum \dfrac{\text{dresidual}^2}{\text{dresidual}} * \dfrac{\text{dresidual}}{\text{da}} \\ 
-& = & \sum{2 * \text{residual}} * \sum{\dfrac{\text{dresidual}}{da}} \;\;\;\; \\ +& = & \sum{2 * \text{residual}} * {\dfrac{\text{dresidual}}{\text{da}}} \;\;\;\; \\ 
-& = & \sum{2 * \text{residual}} * \sum{\dfrac{d{(Y_i - (a + bX_i))}}{da}} \;\;\;\; \\+& = & \sum{2 * \text{residual}} * {\dfrac{d{(Y_i - (a + bX_i))}}{\text{da}}} \;\;\;\; \\
 & = & \sum{2 * \text{residual}} * (0 - 1 - 0) \;\;\;\; \\ & = & \sum{2 * \text{residual}} * (0 - 1 - 0) \;\;\;\; \\
 & & \because{Y_i = 0; \;\;\; a = 1; \;\;\; bX_i = 0} \\ & & \because{Y_i = 0; \;\;\; a = 1; \;\;\; bX_i = 0} \\
Line 44: Line 44:
 \text{for b, (coefficient)} \\  \text{for b, (coefficient)} \\ 
 \\ \\
-\dfrac{\text{d}}{\text{dx}} \sum{(Y_i - (a + bX_i))^2}  & = & \sum \dfrac{\text{d}}{\text{dv}} {(Y_i - (a + bX_i))^2} \\ +\dfrac{\text{d}}{\text{db}} \sum{(Y_i - (a + bX_i))^2}  & = & \sum \dfrac{\text{d}}{\text{db}} {(Y_i - (a + bX_i))^2} \\ 
 & = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \\ & = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \\
 & \because & \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\ & \because & \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\
deriviation_of_a_and_b_in_a_simple_regression.1754342351.txt.gz · Last modified: 2025/08/05 06:19 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki