deriviation_of_a_and_b_in_a_simple_regression
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
deriviation_of_a_and_b_in_a_simple_regression [2025/08/05 06:18] – hkimscil | deriviation_of_a_and_b_in_a_simple_regression [2025/08/05 06:24] (current) – hkimscil | ||
---|---|---|---|
Line 17: | Line 17: | ||
\dfrac{\text{d}}{\text{da}} \sum{(Y_i - (a + bX_i))^2} | \dfrac{\text{d}}{\text{da}} \sum{(Y_i - (a + bX_i))^2} | ||
& = & \sum \dfrac{\text{d}}{\text{da}} {(Y_i - (a + bX_i))^2} \\ | & = & \sum \dfrac{\text{d}}{\text{da}} {(Y_i - (a + bX_i))^2} \\ | ||
- | & & \because {(Y_i - (a + bX_i))^2} = residual^2 \\ | + | & & \because {(Y_i - (a + bX_i))^2} = \text{residual}^2 \\ |
& & \therefore{} \\ | & & \therefore{} \\ | ||
- | & = & \sum \dfrac{\text{dresidual^2}} {da} \\ | + | & = & \sum \dfrac{\text{dresidual}^2} {da} \\ |
- | & = & \sum \dfrac{\text{dresidual^2}}{\text{dresidual}} * \dfrac{\text{dresidual}}{da} \\ | + | & = & \sum \dfrac{\text{dresidual}^2}{\text{dresidual}} * \dfrac{\text{dresidual}}{\text{da}} \\ |
- | & = & \sum{2 * \text{residual}} * \sum{\dfrac{\text{dresidual}}{da}} \;\;\;\; \\ | + | & = & \sum{2 * \text{residual}} * {\dfrac{\text{dresidual}}{\text{da}}} \;\;\;\; \\ |
- | & = & \sum{2 * \text{residual}} * \sum{\dfrac{d{(Y_i - (a + bX_i))}}{da}} \;\;\;\; \\ | + | & = & \sum{2 * \text{residual}} * {\dfrac{d{(Y_i - (a + bX_i))}}{\text{da}}} \;\;\;\; \\ |
& = & \sum{2 * \text{residual}} * (0 - 1 - 0) \;\;\;\; \\ | & = & \sum{2 * \text{residual}} * (0 - 1 - 0) \;\;\;\; \\ | ||
- | & & \because{Y_i = 0; a = 1; bX_i = 0} | + | & & \because{Y_i = 0; \;\;\; a = 1; \;\;\; bX_i = 0} \\ |
& = & \sum{2 * \text{residual}} * (-1) \;\;\;\; \\ | & = & \sum{2 * \text{residual}} * (-1) \;\;\;\; \\ | ||
& = & -2 \sum{(Y_i - (a + bX_i))} \\ | & = & -2 \sum{(Y_i - (a + bX_i))} \\ | ||
Line 44: | Line 44: | ||
\text{for b, (coefficient)} \\ | \text{for b, (coefficient)} \\ | ||
\\ | \\ | ||
- | \dfrac{\text{d}}{\text{dx}} \sum{(Y_i - (a + bX_i))^2} | + | \dfrac{\text{d}}{\text{db}} \sum{(Y_i - (a + bX_i))^2} |
& = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \\ | & = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \\ | ||
& \because & \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\ | & \because & \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\ |
deriviation_of_a_and_b_in_a_simple_regression.1754342288.txt.gz · Last modified: 2025/08/05 06:18 by hkimscil