deriviation_of_a_and_b_in_a_simple_regression

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
deriviation_of_a_and_b_in_a_simple_regression [2024/05/23 08:30] hkimscilderiviation_of_a_and_b_in_a_simple_regression [2025/05/20 01:08] (current) hkimscil
Line 47: Line 47:
 b & = & \dfrac{\sum{(Y_i - \overline{Y})}}{\sum{(X_i - \overline{X})}} \\ b & = & \dfrac{\sum{(Y_i - \overline{Y})}}{\sum{(X_i - \overline{X})}} \\
 b & = & \dfrac{ \sum{(Y_i - \overline{Y})(X_i - \overline{X})} } {\sum{(X_i - \overline{X})(X_i - \overline{X})}} \\ b & = & \dfrac{ \sum{(Y_i - \overline{Y})(X_i - \overline{X})} } {\sum{(X_i - \overline{X})(X_i - \overline{X})}} \\
-b & = & \dfrac{ \text{SP} } {\text{SS}_\text{x}} \\+b & = & \dfrac{ \text{SP} } {\text{SS}_\text{x}} = \dfrac{\text{Cov(X, Y)}} {\text{Var(X)}}\\
 \end{eqnarray*}  \end{eqnarray*} 
 </WRAP> </WRAP>
 +리그레션 라인으로 예측하고 틀린 나머지 error의 제곱의 합을 (ss.res) 최소값으로 만드는 선의 기울기와 절편값은 위와 같다 (a and b).
  
- 
- 
-{{:pasted:20240522-084708.jpeg?400}} 
-{{:pasted:20240522-084738.jpeg?400}} 
deriviation_of_a_and_b_in_a_simple_regression.1716420618.txt.gz · Last modified: 2024/05/23 08:30 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki