User Tools

Site Tools


deriviation_of_a_and_b_in_a_simple_regression

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
deriviation_of_a_and_b_in_a_simple_regression [2024/05/23 08:27] hkimscilderiviation_of_a_and_b_in_a_simple_regression [2024/05/23 08:31] (current) hkimscil
Line 6: Line 6:
 \end{eqnarray*} \end{eqnarray*}
  
 +<WRAP box>
 \begin{eqnarray*} \begin{eqnarray*}
-\\ 
 \text{for a (constant)} \\  \text{for a (constant)} \\ 
 \\ \\
 \dfrac{\text{d}}{\text{dv}} \sum{(Y_i - (a + bX_i))^2} & = & \sum \dfrac{\text{d}}{\text{dv}} {(Y_i - (a + bX_i))^2} \\  \dfrac{\text{d}}{\text{dv}} \sum{(Y_i - (a + bX_i))^2} & = & \sum \dfrac{\text{d}}{\text{dv}} {(Y_i - (a + bX_i))^2} \\ 
-& = & \sum{2 (Y_i - (a + bX_i))} * (-1) \;\;\;\; \because \dfrac{\text{d}}{\text{dv for a}} (Y_i - (a+bX_i)) = -1 \\+& = & \sum{2 (Y_i - (a + bX_i))} * (-1) \;\;\;\; \\ 
 +\because \dfrac{\text{d}}{\text{dv for a}} (Y_i - (a+bX_i)) = -1 \\
 & = & -2 \sum{(Y_i - (a + bX_i))} \\  & = & -2 \sum{(Y_i - (a + bX_i))} \\ 
 \\ \\
Line 24: Line 25:
 a & = & \overline{Y} - b \overline{X} \\ a & = & \overline{Y} - b \overline{X} \\
 \end{eqnarray*}  \end{eqnarray*} 
 +</WRAP>
  
- +<WRAP box>
 \begin{eqnarray*} \begin{eqnarray*}
 \text{for b, (coefficient)} \\  \text{for b, (coefficient)} \\ 
 \\ \\
 \dfrac{\text{d}}{\text{dv}} \sum{(Y_i - (a + bX_i))^2}  & = & \sum \dfrac{\text{d}}{\text{dv}} {(Y_i - (a + bX_i))^2} \\  \dfrac{\text{d}}{\text{dv}} \sum{(Y_i - (a + bX_i))^2}  & = & \sum \dfrac{\text{d}}{\text{dv}} {(Y_i - (a + bX_i))^2} \\ 
-& = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \because \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\+& = & \sum{2 (Y_i - (a + bX_i))} * (-X_i) \;\;\;\; \\ 
 +\because \dfrac{\text{d}}{\text{dv for b}} (Y_i - (a+bX_i)) = -X_i \\
 & = & -2 \sum{X_i (Y_i - (a + bX_i))} \\ & = & -2 \sum{X_i (Y_i - (a + bX_i))} \\
 \\ \\
Line 47: Line 49:
 b & = & \dfrac{ \text{SP} } {\text{SS}_\text{x}} \\ b & = & \dfrac{ \text{SP} } {\text{SS}_\text{x}} \\
 \end{eqnarray*}  \end{eqnarray*} 
 +</WRAP>
  
  
- 
- 
-{{:pasted:20240522-084708.jpeg?400}} 
-{{:pasted:20240522-084738.jpeg?400}} 
deriviation_of_a_and_b_in_a_simple_regression.1716420442.txt.gz · Last modified: 2024/05/23 08:27 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki