c:ms:multiple_regression_lecture_note_for_r

This is an old revision of the document!


Multiple regression with pr, spr, zero-order r

# multiple regression: a simple e.g.
#
#
rm(list=ls())
d <- read.csv("http://commres.net/wiki/_media/regression01-bankaccount.csv") 
d

colnames(d) <- c("y", "x1", "x2")
d
# attach(d)
lm.y.x1 <- lm(y ~ x1, data=d)
summary(lm.y.x1)

lm.y.x2 <- lm(y ~ x2, data=d)
summary(lm.y.x2)

lm.y.x1x2 <- lm(y ~ x1+x2, data=d)
summary(lm.y.x1x2)


lm.y.x1x2$coefficient
# y.hat = 6.399103 + (0.011841)*x1 + (−0.544727)*x2 
a <- lm.y.x1x2$coefficient[1]
b1 <- lm.y.x1x2$coefficient[2]
b2 <- lm.y.x1x2$coefficient[3]

y.pred <- a + (b1 * x1) + (b2 * x2)
y.pred
y.real <- y
y.real
y.mean <- mean(y)
y.mean 

res <- y.real - y.pred
reg <- y.pred - y.mean
ss.res <- sum(res^2)
ss.reg <- sum(reg^2)

ss.tot <- var(y) * (length(y)-1)
ss.tot
ss.res
ss.reg
ss.res+ss.reg

# slope test
summary(lm.y.x1x2)
# note on 2 t-tests 

# beta coefficient (standardized b)
# beta <- b * (sd(x)/sd(y))
beta1 <- b1 * (sd(x1)/sd(y))
beta2 <- b2 * (sd(x2)/sd(y))
beta1
beta2

# install.packages("lm.beta")
library(lm.beta)
lm.beta(lm.y.x1x2)

#######################################################
# partial correlation coefficient and pr2
# x2's explanation? 
lm.tmp.1 <- lm(x2~x1, data=d)
res.x2.x1 <- lm.tmp.1$residuals

lm.tmp.2 <- lm(y~x1, data=d)
res.y.x1 <- lm.tmp.2$residuals

lm.tmp.3 <- lm(res.y.x1 ~ res.x2.x1, data=d)
summary(lm.tmp.3)

# install.packages("ppcor")
library(ppcor)
pcor(d)
spcor(d)
partial.r <- pcor.test(y, x2, x1)
partial.r
str(partial.r)
partial.r$estimate^2

# x1's own explanation?
lm.tmp.4 <- lm(x1~x2, data=d)
res.x1.x2 <- lm.tmp.4$residuals

lm.tmp.5 <- lm(y~x2, data=d)
res.y.x2 <- lm.tmp.5$residuals

lm.tmp.6 <- lm(res.y.x2 ~ res.x1.x2, data=d)
summary(lm.tmp.6)

partial.r2 <- pcor.test(y, x1, x2)
str(partial.r2)
partial.r2$estimate^2
#######################################################

# semipartial correlation coefficient and spr2
#
spr.1 <- spcor.test(y,x2,x1)
spr.2 <- spcor.test(y,x1,x2)
spr.1
spr.2
spr.1$estimate^2
spr.2$estimate^2

lm.tmp.7 <- lm(y ~ res.x2.x1, data = d)
summary(lm.tmp.7)
#######################################################

# get the common area that explain the y variable
# 1.
summary(lm.y.x2)
all.x2 <- summary(lm.y.x2)$r.squared
sp.x2 <- spr.1$estimate^2
all.x2
sp.x2
cma.1 <- all.x2 - sp.x2
cma.1

# 2.
summary(lm.y.x1)
all.x1 <- summary(lm.y.x1)$r.squared
sp.x1 <- spr.2$estimate^2
all.x1
sp.x1
cma.2 <- all.x1 - sp.x1
cma.2

# OR 3.
summary(lm.y.x1x2)
r2.y.x1x2 <- summary(lm.y.x1x2)$r.square
r2.y.x1x2
sp.x1
sp.x2
cma.3 <- r2.y.x1x2 - (sp.x1 + sp.x2)
cma.3

cma.1
cma.2
cma.3
# Note that sorting out unique and common
# explanation area is only possible with 
# semi-partial correlation determinant
# NOT partial correlation determinant
# because only semi-partial correlation
# shares the same denominator (as total 
# y).
#############################################

Output

Simple regression

> # multiple regression: a simple e.g.
> #
> #
> rm(list=ls())
> d <- read.csv("http://commres.net/wiki/_media/regression01-bankaccount.csv") 
> d
   bankaccount income famnum
1            6    220      5
2            5    190      6
3            7    260      3
4            7    200      4
5            8    330      2
6           10    490      4
7            8    210      3
8           11    380      2
9            9    320      1
10           9    270      3
> 
> colnames(d) <- c("y", "x1", "x2")
> d
    y  x1 x2
1   6 220  5
2   5 190  6
3   7 260  3
4   7 200  4
5   8 330  2
6  10 490  4
7   8 210  3
8  11 380  2
9   9 320  1
10  9 270  3
> # attach(d)
> lm.y.x1 <- lm(y ~ x1, data=d)
> summary(lm.y.x1)

Call:
lm(formula = y ~ x1, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5189 -0.8969 -0.1297  1.0058  1.5800 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 3.617781   1.241518   2.914  0.01947 * 
x1          0.015269   0.004127   3.700  0.00605 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.176 on 8 degrees of freedom
Multiple R-squared:  0.6311,	Adjusted R-squared:  0.585 
F-statistic: 13.69 on 1 and 8 DF,  p-value: 0.006046

단순회귀분석에서 (simple regression) F-test와 t-test는 (slope test) 기본적으로 똑 같은 테스트를 말한다. 왜냐하면 F-test에 기여하는 독립변인이 오직하나이고 그 하나가 slope test에 (t-test) 사용되기 때문이다. 이것은 t-test의 t값과 F-test의 F값의 관계에서도 나타난다.

$$ t^2 = F $$

> t.cal <- 3.7 
> t.cal^2 
[1] 13.69
> F.cal <- 13.69
> F.cal
[1] 13.69

Simple regression에서 설명한 것처럼 기울기에 (slope) 대한 t-test는 기울기가 y 변인의 variability를 (평균을 중심으로 흔들림을) 설명하는 데 기여했는가를 테스트 하기 위한 것이다. 기울기가 0 이라면 이는 평균을 (평균선이 기울기가 0이다) 사용하는 것과 같으므로 기울기의 효과가 없음을 의미한다. 따라서 b와 b zero의 차이가 통계학적으로 의미있었는가를 t-test한다.
$$ \text{t calculated value} = \frac {b - 0}{se} $$
위에서 $se$는 아래처럼 구한다고 언급하였다.

\begin{eqnarray*} se & = & \sqrt{\frac{1}{n-2} * \frac{\text{SSE}}{\text{SSx}}} \\ & = & \sqrt{\frac {\text{MSE}} {\text{SSx}}} \\ \text{note that MSE } & = & \text{mean square error } \\ & = & \text{ms.res } \end{eqnarray*}

위에서 구한 t값의 p value는 R에서

summary(lm.y.x1)
n <- length(y)
k <- 1 # num of predictor variables
sse <- sum(lm.y.x1$residuals^2) # ss.res
ssx1 <- sum((x1-mean(x1))^2)
b <- lm.y.x1$coefficient[2]
se <- sqrt((1/(n-2))*(sse/ssx1))
t.b.cal <- (b - 0) / se
t.b.cal
p.value <- 2 * pt(t.b.cal, n-k-1, lower.tail=F)
p.value 
# checck
t.b.cal
f.cal <- t.b.cal^2
f.cal
p.value 
> summary(lm.y.x1)

Call:
lm(formula = y ~ x1, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.5189 -0.8969 -0.1297  1.0058  1.5800 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)   
(Intercept) 3.617781   1.241518   2.914  0.01947 * 
x1          0.015269   0.004127   3.700  0.00605 **
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.176 on 8 degrees of freedom
Multiple R-squared:  0.6311,	Adjusted R-squared:  0.585 
F-statistic: 13.69 on 1 and 8 DF,  p-value: 0.006046

> n <- length(y)
> k <- 1 # num of predictor variables
> sse <- sum(lm.y.x1$residuals^2)
> ssx1 <- sum((x1-mean(x1))^2)
> b <- lm.y.x1$coefficient[2]
> se <-sqrt((1/(n-2))*(sse/ssx1))
> se <-sqrt(mse/ssx1)
> t.b.cal <- (b - 0) / se
> t.b.cal
      x1 
3.699639 
> p.value <- 2 * pt(t.b.cal, n-k-1, lower.tail=F)
> 
> # checck
> t.b.cal
      x1 
3.699639 
> t.b.cal^2
      x1 
13.68733 
> p.value 
         x1 
0.006045749 
> 
> 
> 
> lm.y.x2 <- lm(y ~ x2, data=d)
> summary(lm.y.x2)

Call:
lm(formula = y ~ x2, data = d)

Residuals:
    Min      1Q  Median      3Q     Max 
-1.2537 -0.8881 -0.4851  0.4963  2.5920 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  10.7910     1.1195   9.639 1.12e-05 ***
x2           -0.8458     0.3117  -2.713   0.0265 *  
---
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 1.397 on 8 degrees of freedom
Multiple R-squared:  0.4793,	Adjusted R-squared:  0.4142 
F-statistic: 7.363 on 1 and 8 DF,  p-value: 0.02651
>
>
c/ms/multiple_regression_lecture_note_for_r.1727654146.txt.gz · Last modified: 2024/09/30 08:55 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki