c:ms:2018:schedule:week03
Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
c:ms:2018:schedule:week03 [2018/03/21 07:57] – created hkimscil | c:ms:2018:schedule:week03 [2018/03/21 08:09] (current) – [Central Tendency] hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
- | ㄹ====== Week 3 내용 ====== | + | ====== Week 3 내용 ====== |
- | ===== SPSS ===== | + | |
- | < | + | |
- | + | ||
- | * SPSS | + | |
- | + | ||
- | * [[http:// | + | |
- | * Explanation: | + | |
- | * frequency distribution | + | |
- | * histogram | + | |
- | * stem and leaf display. | + | |
- | * watch [[https:// | + | |
- | * watch [[https:// | + | |
===== Central Tendency ===== | ===== Central Tendency ===== | ||
- | |||
* Central Tendency (집중경향) | * Central Tendency (집중경향) | ||
- | * data: {{: | ||
- | |||
- | < | ||
- | Statistics | ||
- | RTsec | ||
- | N Valid 600 | ||
- | Missing 0 | ||
- | Mean 1.6245 | ||
- | Median 1.5300 | ||
- | Mode 1.33 | ||
- | </ | ||
- | |||
- | < | ||
- | StatisticStd. Error | ||
- | RTsec Mean 1.6245 .02603 | ||
- | 95% Confidence Lower 1.5734 | ||
- | Interval Upper 1.6756 | ||
- | for Mean | ||
- | 5% Trimmed Mean 1.5672 | ||
- | Median 1.5300 | ||
- | Variance .407 | ||
- | Std. Deviation .63772 | ||
- | Minimum .72 | ||
- | Maximum 4.44 | ||
- | Range 3.72 | ||
- | Interquartile Range .77 | ||
- | Skewness 1.465 .100 | ||
- | Kurtosis 2.849 .199 | ||
- | </ | ||
- | {{: | ||
- | |||
- | data file: {{: | ||
- | |||
- | < | ||
- | |||
- | | ||
- | |||
- | | ||
- | | ||
- | | ||
- | | ||
- | | ||
- | | ||
- | |||
- | Stem width: | ||
- | Each leaf: 1 case(s) | ||
- | </ | ||
- | {{: | ||
- | |||
- | Chapter 5 | ||
* Dispersion (variability) -- 분산(변산성) | * Dispersion (variability) -- 분산(변산성) | ||
- | * Data file: [[http:// | ||
* [[:range]] | * [[:range]] | ||
* [[: | * [[: | ||
- | | + | * [[: |
- | | + | |
* 표본변량 $ s^2 $ | * 표본변량 $ s^2 $ | ||
* 모집단변량(전집) $ \sigma^2 $ | * 모집단변량(전집) $ \sigma^2 $ | ||
- | |||
- | < | ||
- | SET Statistic Std. Error | ||
- | ATTRACT 4 Mean 2.6445 .14651 | ||
- | 95% Confidence Lower Bound 2.3379 | ||
- | Interval for Upper Bound 2.9511 | ||
- | Mean | ||
- | 5% Trimmed Mean 2.6483 | ||
- | Median 2.5950 | ||
- | Variance .429 | ||
- | Std. Deviation .65520 | ||
- | Minimum 1.20 | ||
- | Maximum 4.02 | ||
- | Range 2.82 | ||
- | Interquartile Range .82 | ||
- | Skewness -.001 .512 | ||
- | Kurtosis .438 .992 | ||
- | 32 Mean 3.2615 .01541 | ||
- | 95% Confidence Interval for Mean Lower Bound 3.2292 | ||
- | Upper Bound 3.2938 | ||
- | 5% Trimmed Mean 3.2622 | ||
- | Median 3.2650 | ||
- | Variance .005 | ||
- | Std. Deviation .06892 | ||
- | Minimum 3.13 | ||
- | Maximum 3.38 | ||
- | Range .25 | ||
- | Interquartile Range .11 | ||
- | Skewness -.075 .512 | ||
- | Kurtosis -.863 .992 | ||
- | </ | ||
* [[:Standard Deviation]] 표준편차 | * [[:Standard Deviation]] 표준편차 | ||
- | |||
* Variance calculation formula | * Variance calculation formula | ||
* {{anchor: | * {{anchor: | ||
* $ \displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 $ | * $ \displaystyle \sigma_x^2 = \displaystyle \frac {\Sigma X^2 - \frac{(\Sigma X)^2}{N} } {N} = \displaystyle \frac {\Sigma X^2}{N} - \frac {(\Sigma X)^2}{N^2} = \displaystyle \frac {\Sigma X^2}{N} - \bigg(\frac {\Sigma X}{N}\bigg)^2 = \displaystyle \frac {\Sigma X^2}{N} - \mu^2 $ | ||
- | |||
* [[:Degrees of Freedom]] N-1 | * [[:Degrees of Freedom]] N-1 | ||
* [[:Why n-1]] | * [[:Why n-1]] | ||
Line 119: | Line 20: | ||
* [[:Standard Error]] | * [[:Standard Error]] | ||
===== CLT에 관한 정리 ===== | ===== CLT에 관한 정리 ===== | ||
- | 우선, Expected value (기대값)와 Variance (분산)의 연산은 아래와 같이 계산될 수 있다. | ||
- | |||
- | X,Y 가 서로 독립적이라고 할 때: | ||
- | \begin{eqnarray} | ||
- | E[aX] = a E[X] \\ | ||
- | E[X+Y] = E[X] + E[Y] \\ | ||
- | Var[aX] = a^{\tiny{2}} Var[X] \\ | ||
- | Var[X+Y] = Var[X] + Var[Y] | ||
- | \end{eqnarray} | ||
- | |||
- | 이때, 한 샘플의 평균값을 $X$ 라고 하면, 평균들의 합인 $S_k$ 는 | ||
- | |||
- | $$ S_{k} = X_1 + X_2 + . . . + X_k $$ | ||
- | |||
- | 와 같다. | ||
- | |||
- | 이렇게 얻은 샘플들(k 개의)의 평균인 $ A_k $ 는, | ||
- | |||
- | $$ A_k = \displaystyle \frac{(X_1 + X_2 + . . . + X_k)}{k} = \frac{S_{k}}{k} $$ | ||
- | |||
- | 라고 할 수 있다. | ||
- | |||
- | 이때, | ||
- | |||
- | $$ | ||
- | \begin{align*} | ||
- | E[S_k] & = E[X_1 + X_2 + . . . +X_k] \\ | ||
- | & = E[X_1] + E[X_2] + . . . + E[X_k] \\ | ||
- | & = \mu + \mu + . . . + \mu = k * \mu \\ | ||
- | \end{align*} | ||
- | $$ | ||
- | |||
- | $$ | ||
- | \begin{align*} | ||
- | Var[S_k] & = Var[X_1 + X_2 + . . . +X_k] \\ | ||
- | & = Var[X_1] + Var[X_2] + \dots + Var[X_k] \\ | ||
- | & = k * \sigma^2 | ||
- | \end{align*} | ||
- | $$ | ||
- | |||
- | 이다. | ||
- | |||
- | 그렇다면, | ||
- | |||
- | $$ | ||
- | \begin{align*} | ||
- | E[A_k] & = E[\frac{S_k}{k}] \\ | ||
- | & = \frac{1}{k}*E[S_k] \\ | ||
- | & = \frac{1}{k}*k*\mu = \mu | ||
- | \end{align*} | ||
- | $$ | ||
- | |||
- | 이고, | ||
- | |||
- | $$ | ||
- | \begin{align*} | ||
- | Var[A_k] & = Var[\frac{S_k}{k}] \\ | ||
- | & = \frac{1}{k^2} Var[S_k] \\ | ||
- | & = \frac{1}{k^2}*k*\sigma^2 \\ | ||
- | & = \frac{\sigma^2}{k} \nonumber | ||
- | \end{align*} | ||
- | $$ | ||
- | |||
- | 라고 할 수 있다. | ||
- | |||
c/ms/2018/schedule/week03.1521588432.txt.gz · Last modified: 2018/03/21 07:57 by hkimscil