User Tools

Site Tools


c:ma:regression_lecture_note

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

c:ma:regression_lecture_note [2023/10/27 22:18] – created hkimscilc:ma:regression_lecture_note [2023/10/27 22:19] (current) hkimscil
Line 1: Line 1:
 {{regression.lecturenote.r}} {{regression.lecturenote.r}}
 +
 +<code>
 +set.seed(401)
 +sn <- 25
 +x <- rnorm(sn, 100, 10)
 +x
 +y <- 1.4 * x + 2 + rnorm(sn, 0, 10)
 +y
 +df <- data.frame(x, y)
 +# density graph
 +install.packages("ggplot2")
 +library(ggplot2)
 +ggplot(data=df, aes(y)) + 
 +  geom_histogram() + 
 +  geom_vline(aes(xintercept=mean(y)),
 +             color="red", linetype="dashed", size=1) +
 +  coord_flip()
 +
 +ggplot(data=df, aes(y)) + 
 +  geom_density(color="blue", size=1.5) +
 +  geom_vline(aes(xintercept=mean(y)),
 +             color="red", linetype="dashed", size=1) +
 +  coord_flip()
 +
 +lm.mod <- lm(y~x, data=df)
 +summary(lm.mod)
 +str(lm.mod)
 +inc.y <- lm.mod$coefficients[1]
 +slope.x <- lm.mod$coefficients[2]
 +inc.y
 +slope.x
 +
 +ggplot(data=df, aes(x,y)) +
 +  geom_point(color="blue", size=1.5, pch=1.5) +
 +  geom_hline(aes(yintercept=mean(y))) +
 +  geom_abline(intercept=inc.y, slope=slope.x)
 +
 +
 +ggplot(data=df, aes(x,y)) +
 +  geom_point(color="blue", size=2.5, pch=2) +
 +  geom_hline(aes(yintercept=mean(y)), size=1.5, color="red") +
 +  geom_abline(intercept=inc.y, slope=slope.x, size=1.5, color="darkgreen")
 +
 +################################
 +################################
 +################################
 +################################
 +
 +set.seed(101)
 +sn <- 400
 +x <- rnorm(sn, 100, 10)
 +x
 +y <- 1.4*x + 2 + rnorm(sn, 0, 16)
 +y
 +df <- data.frame(x,y)
 +# density graph
 +ggplot(data=df, aes(y)) + 
 +  geom_histogram() + 
 +  geom_vline(aes(xintercept=mean(y)),
 +             color="red", linetype="dashed", size=1) +
 +  coord_flip()
 +
 +ggplot(data=df, aes(y)) + 
 +  geom_density(color="blue", size=1.5) +
 +  geom_vline(aes(xintercept=mean(y)),
 +             color="red", linetype="dashed", size=1) +
 +  coord_flip()
 +
 +
 +ggplot(data=df, aes(x,y)) +
 +  geom_point(color="blue", size=1.5, pch=2) +
 +  geom_hline(aes(yintercept=mean(y)), size=1, color="darkgreen") +
 +  geom_abline(intercept=10, slope=1.5, size=1.5, color="red")
 +
 +lm.mod2 <- lm(y~x, data=df)
 +sum.lm.mod2 <- summary(lm.mod2)
 +sum.lm.mod2
 +
 +lm.mod2$coefficients[2]
 +lm.mod2$coefficients[1]
 +
 +b <- lm.mod2$coefficients[2]
 +a <- lm.mod2$coefficients[1]
 +
 +ggplot(data=df, aes(x,y)) +
 +  geom_point(color="blue", size=1.5, pch=2) +
 +  geom_hline(aes(yintercept=mean(y)), size=1, color="darkgreen") +
 +  geom_abline(intercept=a, slope=b, size=1.5, color="red")
 +
 +lm.mod2$residuals
 +sum(lm.mod2$residuals^2)
 +ss.res <- sum(lm.mod2$residuals^2)
 +
 +mean.y <- mean(df$y)
 +var.tot <- var(df$y)
 +df.tot <- length(df$y)-1
 +ss.tot <- var.tot*df.tot
 +ss.tot
 +
 +y.hat <- lm.mod2$fitted.values
 +y.hat - mean(df$y)
 +explained <- y.hat - mean(df$y)
 +ss.exp <- sum(explained^2) 
 +ss.exp
 +ss.res
 +
 +ss.exp + ss.res
 +ss.tot
 +
 +r.square <- ss.exp / ss.tot
 +r.square
 +sum.lm.mod2
 +
 +r.coeff <- sqrt(r.square)
 +r.coeff
 +cor(x,y)
 +
 +###
 +ggplot(data=df, aes(x,y)) +
 +  geom_point(color="blue", size=1.5, pch=1.5) +
 +  geom_hline(aes(yintercept=mean(y)), size=1, color="darkgreen") +
 +  stat_smooth(method = "lm",
 +              formula = y ~ x,
 +              geom = "smooth", color="red", size=1)
 +
 +
 +
 +</code>
c/ma/regression_lecture_note.1698412706.txt.gz · Last modified: 2023/10/27 22:18 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki