c:ma:regression_lecture_note
Differences
This shows you the differences between two versions of the page.
c:ma:regression_lecture_note [2023/10/27 22:18] – created hkimscil | c:ma:regression_lecture_note [2023/10/27 22:19] (current) – hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
{{regression.lecturenote.r}} | {{regression.lecturenote.r}} | ||
+ | |||
+ | < | ||
+ | set.seed(401) | ||
+ | sn <- 25 | ||
+ | x <- rnorm(sn, 100, 10) | ||
+ | x | ||
+ | y <- 1.4 * x + 2 + rnorm(sn, 0, 10) | ||
+ | y | ||
+ | df <- data.frame(x, | ||
+ | # density graph | ||
+ | install.packages(" | ||
+ | library(ggplot2) | ||
+ | ggplot(data=df, | ||
+ | geom_histogram() + | ||
+ | geom_vline(aes(xintercept=mean(y)), | ||
+ | | ||
+ | coord_flip() | ||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_density(color=" | ||
+ | geom_vline(aes(xintercept=mean(y)), | ||
+ | | ||
+ | coord_flip() | ||
+ | |||
+ | lm.mod <- lm(y~x, data=df) | ||
+ | summary(lm.mod) | ||
+ | str(lm.mod) | ||
+ | inc.y <- lm.mod$coefficients[1] | ||
+ | slope.x <- lm.mod$coefficients[2] | ||
+ | inc.y | ||
+ | slope.x | ||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_point(color=" | ||
+ | geom_hline(aes(yintercept=mean(y))) + | ||
+ | geom_abline(intercept=inc.y, | ||
+ | |||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_point(color=" | ||
+ | geom_hline(aes(yintercept=mean(y)), | ||
+ | geom_abline(intercept=inc.y, | ||
+ | |||
+ | ################################ | ||
+ | ################################ | ||
+ | ################################ | ||
+ | ################################ | ||
+ | |||
+ | set.seed(101) | ||
+ | sn <- 400 | ||
+ | x <- rnorm(sn, 100, 10) | ||
+ | x | ||
+ | y <- 1.4*x + 2 + rnorm(sn, 0, 16) | ||
+ | y | ||
+ | df <- data.frame(x, | ||
+ | # density graph | ||
+ | ggplot(data=df, | ||
+ | geom_histogram() + | ||
+ | geom_vline(aes(xintercept=mean(y)), | ||
+ | | ||
+ | coord_flip() | ||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_density(color=" | ||
+ | geom_vline(aes(xintercept=mean(y)), | ||
+ | | ||
+ | coord_flip() | ||
+ | |||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_point(color=" | ||
+ | geom_hline(aes(yintercept=mean(y)), | ||
+ | geom_abline(intercept=10, | ||
+ | |||
+ | lm.mod2 <- lm(y~x, data=df) | ||
+ | sum.lm.mod2 <- summary(lm.mod2) | ||
+ | sum.lm.mod2 | ||
+ | |||
+ | lm.mod2$coefficients[2] | ||
+ | lm.mod2$coefficients[1] | ||
+ | |||
+ | b <- lm.mod2$coefficients[2] | ||
+ | a <- lm.mod2$coefficients[1] | ||
+ | |||
+ | ggplot(data=df, | ||
+ | geom_point(color=" | ||
+ | geom_hline(aes(yintercept=mean(y)), | ||
+ | geom_abline(intercept=a, | ||
+ | |||
+ | lm.mod2$residuals | ||
+ | sum(lm.mod2$residuals^2) | ||
+ | ss.res <- sum(lm.mod2$residuals^2) | ||
+ | |||
+ | mean.y <- mean(df$y) | ||
+ | var.tot <- var(df$y) | ||
+ | df.tot <- length(df$y)-1 | ||
+ | ss.tot <- var.tot*df.tot | ||
+ | ss.tot | ||
+ | |||
+ | y.hat <- lm.mod2$fitted.values | ||
+ | y.hat - mean(df$y) | ||
+ | explained <- y.hat - mean(df$y) | ||
+ | ss.exp <- sum(explained^2) | ||
+ | ss.exp | ||
+ | ss.res | ||
+ | |||
+ | ss.exp + ss.res | ||
+ | ss.tot | ||
+ | |||
+ | r.square <- ss.exp / ss.tot | ||
+ | r.square | ||
+ | sum.lm.mod2 | ||
+ | |||
+ | r.coeff <- sqrt(r.square) | ||
+ | r.coeff | ||
+ | cor(x,y) | ||
+ | |||
+ | ### | ||
+ | ggplot(data=df, | ||
+ | geom_point(color=" | ||
+ | geom_hline(aes(yintercept=mean(y)), | ||
+ | stat_smooth(method = " | ||
+ | formula = y ~ x, | ||
+ | geom = " | ||
+ | |||
+ | |||
+ | |||
+ | </ |
c/ma/regression_lecture_note.1698412706.txt.gz · Last modified: 2023/10/27 22:18 by hkimscil