This is an old revision of the document!
Table of Contents
Class page
multivariate statistics in R
network analysis in R
- A User’s Guide to Network Analysis in R (Use R!)
- Statistical Analysis of Network Data with R (Use R!) 2014th Edition
https://lagunita.stanford.edu
Network Analysis in R using igraph package – from Datacamp
Marketing analysis in r statistics from Datacamp
Week01 (Sep 4, 6)
ideas and concepts
Introduction to R and others
- Downloading and Installing R
- Starting R
- Entering Commands
- Exiting from R
- Interrupting R
- Viewing the Supplied Documentation
- Getting Help on a Function
- Searching the Supplied Documentation
- Getting Help on a Package
- Searching the Web for Help
- Finding Relevant Functions and Packages
- Searching the Mailing Lists
- Submitting Questions to the Mailing Lists
using theories 연구문제와 가설 and making hypotheses
Installing R
Assignment
Week02 (Sep 11, 13)
Concepts and ideas
Some basics
- Introduction
- Printing Something
- Setting Variables
- Listing Variables
- Deleting Variables
- Creating a Vector
- Computing Basic Statistics
- Creating Sequences
- Comparing Vectors
- Selecting Vector Elements
- Performing Vector Arithmetic
- Getting Operator Precedence Right
- Defining a Function
- Typing Less and Accomplishing More
- Avoiding Some Common Mistakes
Assignment
Week03 (Sep 18, 20)
Activities
- Grouping. See Group page
- Group discussion on group works
Concepts and ideas
You should be knoweldgeable about research question and hypothesis building. However, we will be deal with the issue in the class. Please read the two and 커뮤니케이션_연구문제_제기와_가설 individually. The materials will be on quizzes.
Navigating software
- Introduction
- Getting and Setting the Working Directory
- Saving Your Workspace
- Viewing Your Command History
- Saving the Result of the Previous Command
- Displaying the Search Path
- Accessing the Functions in a Package
- Accessing Built-in Datasets
- Viewing the List of Installed Packages
- Installing Packages from CRAN
- Setting a Default CRAN Mirror
- Suppressing the Startup Message
- Running a Script
- Running a Batch Script
- Getting and Setting Environment Variables
- Locating the R Home Directory
- Customizing R
- Introduction
- Entering Data from the Keyboard
- Printing Fewer Digits (or More Digits)
- Redirecting Output to a File
- Listing Files
- Dealing with “Cannot Open File” in Windows
- Reading Fixed-Width Records
- Reading Tabular Data Files
- Reading from CSV Files
- Writing to CSV Files
- Reading Tabular or CSV Data from the Web
- Reading Data from HTML Tables
- Reading Files with a Complex Structure
- Reading from MySQL Databases
- Saving and Transporting Objects
Assignment
Assignment for all
- Read 커뮤니케이션_연구문제_제기와_가설
- Read research question
- Read hypothesis
Group assignment
- Hypothesis 문서의 예_1의 “제3자 효과이론과 침묵의 나선이론 연계성” 논문을 읽고 가설을 기술하시오.
- 각 가설의 독립변인(Independent variables), 종속변인 (dependent variabless) 등을 나열하시오.
- 이 논문에 사용된 이론은 무엇인지 기술하고 설명하시오.
Week04 (Sep 25, 27)
Class Activity
- 가설 만들어 보기
- No need to read theories
- the third person effect
- Read hypothesis
- how to write hypothesis at behavioral science writing.
- One sample hypothesis Hypothesis at www.socialresearchmethods.net
Concepts and ideas
- Introduction
- Appending Data to a Vector
- Inserting Data into a Vector
- Understanding the Recycling Rule
- Creating a Factor (Categorical Variable)
- Combining Multiple Vectors into One Vector and a Factor
- Creating a List
- Selecting List Elements by Position
- Selecting List Elements by Name
- Building a Name/Value Association List
- Removing an Element from a List
- Flatten a List into a Vector
- Removing NULL Elements from a List
- Removing List Elements Using a Condition
- Initializing a Matrix
- Performing Matrix Operations
- Giving Descriptive Names to the Rows and Columns of a Matrix
- Selecting One Row or Column from a Matrix
- Initializing a Data Frame from Column Data
- Initializing a Data Frame from Row Data
- Appending Rows to a Data Frame
- Preallocating a Data Frame
- Selecting Data Frame Columns by Position
- Selecting Data Frame Columns by Name
- Selecting Rows and Columns More Easily
- Changing the Names of Data Frame Columns
- Editing a Data Frame
- Removing NAs from a Data Frame
- Excluding Columns by Name
- Combining Two Data Frames
- Merging Data Frames by Common Column
- Accessing Data Frame Contents More Easily
- Converting One Atomic Value into Another
- Converting One Structured Data Type into Another
Assignment
ga04.making.hypothesis 가설 연습 ajoubb
- 첫번째, R(rstudio사용)에서 default로 구할 수 있는 mtcars 데이터를 이용하여 t-test와 anova test를 할 수 있는 가설을 만들고, R에서 분석해 보세요.
- 가설에 대해서는 hypothesis testing 문서를 참조하시기 바랍니다.
- t-test는 t-test를 참조하시기 바랍니다.
- 4가지 종류의 t-test 중에서 mtcars 데이터의 경우는 몇 번째 것을 사용해야 하는가에 대해서 확인하세요.
- anova에 대해서는 anova 문서를 참조하세요.
- R에서의 분석은 각각 t.test와 aov 펑션을 이용해야 합니다.
- 두번째, 신문에서의 여론조사 결과에 나오는 error of margin에 대해서 확인해보시기 바랍니다.
- 여론조사 결과가 내용인 신문기사 2개를 고릅니다.
- 일반적인 se값은 아래와 같이 구합니다.
- $ \displaystyle \sigma_{\hat{p}} = \sqrt{\frac{p*q}{n}} , \;\;\; q = (1 - p) $
- $ p = .752 $ = 75.2%
- 파일을 upload한다면 파일이름은
- ga04.making.hypothesis.그룹이름.ext 과 같이 저장한 후에 올리시기 바랍니다.
- 위에서 “그룹이름”과 “ext”은 그룹에 따라서 바꾸야 합니다.
- 3조의 경우는 “그룹이름”대신 03을 사용합니다.
- ms word파일로 저장을 했다면 파일extension으로 “docx”가 생길겁니다. text파일로 저장을 했다면 “txt”가 생길 것입니다.
- 따라서 위의 예에 따르면 과제 이름은
- ga04.making.hypothesis.03.txt와 같을 겁니다.
Week05 (Oct 2, 4)
ideas and concepts
probability
General Statistics
t.test: mtcars
> mdata <- split(mtcars$mpg, mtcars$am) > mdata $`0` [1] 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 [13] 10.4 14.7 21.5 15.5 15.2 13.3 19.2 $`1` [1] 21.0 21.0 22.8 32.4 30.4 33.9 27.3 26.0 30.4 15.8 19.7 15.0 [13] 21.4 > stack(mdata) values ind 1 21.4 0 2 18.7 0 3 18.1 0 4 14.3 0 5 24.4 0 6 22.8 0 7 19.2 0 8 17.8 0 9 16.4 0 10 17.3 0 11 15.2 0 12 10.4 0 13 10.4 0 14 14.7 0 15 21.5 0 16 15.5 0 17 15.2 0 18 13.3 0 19 19.2 0 20 21.0 1 21 21.0 1 22 22.8 1 23 32.4 1 24 30.4 1 25 33.9 1 26 27.3 1 27 26.0 1 28 30.4 1 29 15.8 1 30 19.7 1 31 15.0 1 32 21.4 1 > mdata $`0` [1] 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 [13] 10.4 14.7 21.5 15.5 15.2 13.3 19.2 $`1` [1] 21.0 21.0 22.8 32.4 30.4 33.9 27.3 26.0 30.4 15.8 19.7 15.0 [13] 21.4 > t.test(mpg~am, data=mtcars) Welch Two Sample t-test data: mpg by am t = -3.7671, df = 18.332, p-value = 0.001374 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -11.280194 -3.209684 sample estimates: mean in group 0 mean in group 1 17.14737 24.39231 > t.test(mpg~am, data=mtcars, var.equal=T) Two Sample t-test data: mpg by am t = -4.1061, df = 30, p-value = 0.000285 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -10.84837 -3.64151 sample estimates: mean in group 0 mean in group 1 17.14737 24.39231 > m1 <- mdata[[1]] > m2 <- mdata[[2]] > m1 [1] 21.4 18.7 18.1 14.3 24.4 22.8 19.2 17.8 16.4 17.3 15.2 10.4 [13] 10.4 14.7 21.5 15.5 15.2 13.3 19.2 > m2 [1] 21.0 21.0 22.8 32.4 30.4 33.9 27.3 26.0 30.4 15.8 19.7 15.0 [13] 21.4 > m1.var <- var(m1) > m2.var <- var(m2) > m1.n <- length(m1) > m2.n <- length(m2) > m1.df <- length(m1)-1 > m2.df <- length(m2)-1 > m1.ss <- m1.var*m1.df > m2.ss <- m2.var*m2.df > m1.ss [1] 264.5874 > m2.ss [1] 456.3092 > m12.ss <- m1.ss+m2.ss > m12.ss [1] 720.8966 > m12.df <- m1.df+m2.df > pv <- m12.ss/m12.df > pv [1] 24.02989 > pv/m1.n [1] 1.264731 > pv/m2.n [1] 1.848453 > m.se <- sqrt((pv/m1.n)+(pv/m2.n)) > m.se [1] 1.764422 > m1.m <- mean(m1) > m2.m <- mean(m2) > m.tvalue <- (m1.m-m2.m)/m.se > m.tvalue [1] -4.106127
> t.test(mpg~am, data=mtcars, var.equal=T) Two Sample t-test data: mpg by am t = -4.1061, df = 30, p-value = 0.000285 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -10.84837 -3.64151 sample estimates: mean in group 0 mean in group 1 17.14737 24.39231
anova: mtcars
stats4each = function(x,y) { meani <- tapply(x,y,mean) vari <- tapply(x,y,var) ni <- tapply(x,y,length) dfi <- tapply(x,y,length)-1 ssi <- tapply(x,y,var)*(tapply(x,y,length)-1) out <- rbind(meani,vari,ni,dfi,ssi) return(out) } library(MASS) tempd <- iris x <- tempd$Species y <- tempd$Sepal.Width tempd <- mtcars x <- tempd$gear y <- tempd$mpg tempd <- mtcars x <- tempd$am y <- tempd$mpg x <- factor(x) dfbetween <- nlevels(x)-1 stats <- stats4each(y, x) stats sswithin <- sum(stats[5,]) sstotal <- var(y)*(length(y)-1) ssbetween <- sstotal-sswithin round(sswithin,2) round(ssbetween,2) round(sstotal,2) dfwithin <- sum(stats[4,]) dftotal <- length(y)-1 dfwithin dfbetween dftotal mswithin <- sswithin / dfwithin msbetween <- ssbetween / dfbetween mstotal <- sstotal / dftotal round(mswithin,2) round(msbetween,2) round(mstotal,2) fval <- round(msbetween/mswithin,2) fval siglevel <- pf(q=fval, df1=dfbetween, df2=dfwithin, lower.tail=FALSE) siglevel mod <- aov(y~x, data=tempd) summary(mod)
cor
attach(mtcars) cor(mpg, hp) mycor <- cov(mpg,hp)/(sd(mpg)*sd(hp)) mycor sp <- cov(mpg,hp)*(length(mtcars$hp)-1) ssx <- var(mpg)*(length(mtcars$mpg)-1) ssy <- var(hp)*(length(mtcars$hp)-1) mycor2 <- sp/sqrt(ssx*ssy) mycor2 mycor2 == mycor mycor == cor(mpg,hp) mycor2 == cor(mpg,hp)
Assignment
Week06 (Oct 9, 11)
ideas and concepts
correlation
regression
multiple regression
Assignment
- Public opinion in online environments 1)
- etc. 여론형성과 관련된 사회학적 혹은 사회심리학적 이론을 찾아보고 소개하기, 예로 위의 세가지. 얼마전 사회현상을 어떻게 설명하면 좋을까에 대해서 논의정리하기? 정확한 온라인 환경에서의 여론파악을 위해서 어떤 것이 필요할까?
- 혹은 다른 문제에 대해서 (. . . 조에 따른 . . .)
- Hypotheses
- Multiple regression hypotheses.
- Google Survey Questions
Week07 (Oct 16, 18)
ideas and concepts
Assignment
Week08 (Oct 23, 25)
Mid-term period
Quiz the first one
- Lecture materials + textbook
- Textbook: r cookbook: textbook과 관련해서는 예상되는 아웃풋, 아웃풋을 얻기위한 명령어, 명령어(function)에 사용되는 옵션이 의미하는 것 등에 대한 사지선다 혹은 단답식 질문이 나옵니다. 펑션의 옵션사용 등과 같은 정확한 것에 대해서는 질문이 나오지 않습니다.
- 예
- one sample t-test를 하기 위한 명령어를 쓰시오 (x)
- t.test(sample, mu=100)에서 mu는 무엇을 의미하는가? (o)
- 다음 중 sapply의 아웃풋 모양으로 적당한 것은? 등등
- Lecture content
-
- 정확한 t test 공식등은 외울 필요가 없습니다. (제공됩니다).
- 간단한 t test 계산을 요구할 수 있습니다.
- ANOVA도 마찬가지입니다.
Week09 (Oct 30, Nov 1)
ideas and concepts
correlation
regression
multiple regression
Partial and semipartial correlation
using dummy variables
Statistical Regression Methods
Sequential Regression
Activity
Assignment
Week10 (Nov 6, 8)
ideas and concepts
Assignment
Week11 (Nov 13, 15)
ideas and concepts
Assignment
Week12 (Nov 20, 22)
ideas and concepts
Assignment
Week13 (Nov 27, 29)
ideas and concepts
social network analysis
social network analysis tutorial
sna in r
announcement
correlation
regression
multiple regression
partial and semipartial correlation
using dummy variables
Assignment
Week14 (Dec 4, 6)
Group Presentation
Week15 (Dec 11, 13)
Group Presentation
Week16 (June 18, 20)
Final-term