binomial_distribution
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
binomial_distribution [2025/10/11 06:28] – hkimscil | binomial_distribution [2025/10/11 08:26] (current) – [e.g.,] hkimscil | ||
---|---|---|---|
Line 7: | Line 7: | ||
* 각 한문제를 맞힐 확률은 1/4, 틀릴 확률은 3/4 | * 각 한문제를 맞힐 확률은 1/4, 틀릴 확률은 3/4 | ||
* 3문제를 풀면서 (3번의 시행) 각 문제를 맞힐 확률 분포를 말한다. | * 3문제를 풀면서 (3번의 시행) 각 문제를 맞힐 확률 분포를 말한다. | ||
+ | * 기하분포의 경우, 각 문제를 맞히거나 틀리거나를 고려하지 않고 계속 틀리다가 언젠가 한번 맞힘으로써 사건이 끝난다. | ||
{{: | {{: | ||
Line 55: | Line 56: | ||
- | |||
- | ====== Binomial Distribution ====== | ||
- | - 1번의 시행에서 특정 사건 A가 발생할 확률을 p라고 하면 | ||
- | - n번의 (독립적인) 시행에서 사건 A가 발생할 때의 확률 분포를 | ||
- | - 이항확률분포라고 한다. | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
- | {n \choose | + | P(X=2) & = & {{3} \choose |
+ | & = & 0.0694 | ||
\end{eqnarray*} | \end{eqnarray*} | ||
- | **The number of successes in n independent Bernoulli trials has a binomial distribution.** | + | < |
+ | > dbinom(2, 3, 1/6) | ||
+ | [1] 0.06944444 | ||
+ | > | ||
+ | </ | ||
- | 이는 n 번의 독립적인 Bernoulli trials 로 볼 수 있다. | + | ====== Expectation and Variance of ====== |
- | * There are n independent trials | + | Toss a fair coin once. What is the distribution of the number of heads? |
- | * Each trial can result in one of two possible outcomes, labelled | + | * A single trial |
- | * success can be a bad thing -- tire blow-up. | + | * The trial can be one of two possible outcomes |
- | * P(success) = p, | + | * P(success) = p |
* P(failure) = 1-p | * P(failure) = 1-p | ||
- | 일반적으로 binomial distribution은 아래와 같이 계산된다. | + | X = 0, 1 (failure and success) |
+ | $P(X=x) = p^{x}(1-p)^{1-x}$ or | ||
+ | $P(x) = p^{x}(1-p)^{1-x}$ | ||
- | \begin{align*} | + | 참고. |
- | P(X=x) & = _{n}C_{x} \cdot p^{x} \cdot (1-p)^{n-x}, | + | | x | 0 |
- | \text{or } & \\ | + | | p(x) | q = (1-p) | p | |
- | P(X=x) & = {{n} \choose {x}} \cdot p^{x} \cdot (1-p)^{n-x}, \;\; \text{for} \;\; x = 0, 1, 2, . . ., n. \\ | + | |
- | \end{align*} | + | |
- | A balanced dice is rolled 3 times. What is probability a 5 comes up exactly twice? | + | When x = 0 (failure), $P(X = 0) = p^{0}(1-p)^{1-0} = (1-p)$ = Probability of failure |
+ | When x = 1 (success), $P(X = 1) = p^{1}(1-p)^{0} = p $ = Probability of success | ||
- | p = 1/6 | + | |
- | n = 3 | + | This is called Bernoulli distribution. |
- | x = 2 | + | * Bernoulli distribution expands to binomial distribution, |
+ | * Binomial distribution | ||
+ | * Geometric distribution | ||
+ | |||
+ | $$X \sim B(1,p)$$ | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
- | P(X=2) & = & {{3} \choose | + | E(X) & = & \sum{x * p(x)} \\ |
- | & = & 0.0694 | + | & = & (0*q) + (1*p) \\ |
+ | & = & p | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | |||
+ | \begin{eqnarray*} | ||
+ | Var(X) & = & E((X - E(X))^{2}) \\ | ||
+ | & = & \sum_{x}(x-E(X))^2p(x) | ||
+ | & = & (0 - p)^{2}*q + (1 - p)^{2}*p | ||
+ | & = & (0^2 - 2p0 + p^2)*q + (1-2p+p^2)*p \\ | ||
+ | & = & p^2*(1-p) + (1-2p+p^2)*p \\ | ||
+ | & = & p^2 - p^3 + p - 2p^2 + p^3 \\ | ||
+ | & = & p - p^2 \\ | ||
+ | & = & p(1-p) \\ | ||
+ | & = & pq | ||
\end{eqnarray*} | \end{eqnarray*} | ||
+ | For generalization, | ||
+ | |||
+ | $$X \sim B(n,p)$$ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | E(X) & = & E(X_{1}) + E(X_{2}) + ... + E(X_{n}) \\ | ||
+ | & = & n * E(X_{i}) \\ | ||
+ | & = & n * p | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | Var(X) & = & Var(X_{1}) + Var(X_{2}) + ... + Var(X_{n}) \\ | ||
+ | & = & n * Var(X_{i}) \\ | ||
+ | & = & n * p * q | ||
+ | \end{eqnarray*} | ||
+ | |||
+ | ===== Proof of Binomial Expected Value and Variance ===== | ||
+ | [[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance | ||
+ | |||
+ | ====== e.g., ====== | ||
+ | <WRAP box> | ||
+ | In the latest round of Who Wants To Win A Swivel Chair, there are 5 questions. The probability of | ||
+ | getting a successful outcome in a single trial is 0.25 | ||
+ | - What’s the probability of getting exactly two questions right? | ||
+ | - What’s the probability of getting exactly three questions right? | ||
+ | - What’s the probability of getting two or three questions right? | ||
+ | - What’s the probability of getting no questions right? | ||
+ | - What are the expectation and variance? | ||
+ | </ | ||
+ | |||
+ | Ans 1. | ||
< | < | ||
- | > dbinom(2, | + | p <- .25 |
- | [1] 0.06944444 | + | q <- 1-p |
+ | r <- 2 | ||
+ | n <-5 | ||
+ | # combinations of 5,2 | ||
+ | c <- choose(n,r) | ||
+ | ans1 <- c*(p^r)*(q^(n-r)) | ||
+ | ans1 # or | ||
+ | |||
+ | choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | |||
+ | dbinom(r, n, p) | ||
+ | |||
+ | </ | ||
+ | |||
+ | < | ||
+ | > p <- .25 | ||
+ | > q <- 1-p | ||
+ | > r <- 2 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,2 | ||
+ | > c <- choose(n,r) | ||
+ | > ans <- c*(p^r)*(q^(n-r)) | ||
+ | > ans | ||
+ | [1] 0.2636719 | ||
+ | > | ||
+ | > choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | [1] 0.2636719 | ||
+ | > | ||
+ | > dbinom(r, n, p) | ||
+ | [1] 0.2636719 | ||
+ | > | ||
> | > | ||
</ | </ | ||
Line 101: | Line 182: | ||
- | \begin{eqnarray*} | + | |
- | X \sim B(n, p) \\ | + | |
- | \end{eqnarray*} | + | |
+ | Ans 2. | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | r <- 3 | ||
+ | n <-5 | ||
+ | # combinations of 5,3 | ||
+ | c <- choose(n, | ||
+ | ans2 <- c*(p^r)*(q^(n-r)) | ||
+ | ans2 | ||
+ | |||
+ | choose(n, r)*(p^r)*(q^(n-r)) | ||
+ | |||
+ | dbinom(r, n, p) | ||
+ | |||
+ | </ | ||
+ | < | ||
+ | > p <- .25 | ||
+ | > q <- 1-p | ||
+ | > r <- 3 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,3 | ||
+ | > c <- choose(n, | ||
+ | > ans2 <- c*(p^r)*(q^(n-r)) | ||
+ | > ans2 | ||
+ | [1] 0.08789062 | ||
+ | > | ||
+ | > choose(n, | ||
+ | [1] 0.08789062 | ||
+ | > | ||
+ | > dbinom(r, n, p) | ||
+ | [1] 0.08789063 | ||
+ | > | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | Ans 3. 중요 | ||
+ | < | ||
+ | ans1 + ans2 | ||
+ | dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
+ | dbinom(2:3, 5, .25) | ||
+ | sum(dbinom(2: | ||
+ | pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > ans1 + ans2 | ||
+ | [1] 0.3515625 | ||
+ | > dbinom(2, 5, .25) + dbinom(3, 5, .25) | ||
+ | [1] 0.3515625 | ||
+ | > dbinom(2:3, 5, .25) | ||
+ | [1] 0.26367187 0.08789063 | ||
+ | > sum(dbinom(2: | ||
+ | [1] 0.3515625 | ||
+ | > pbinom(3, 5, .25) - pbinom(1, 5, .25) | ||
+ | [1] 0.3515625 | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | Ans 4. | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | r <- 0 | ||
+ | n <-5 | ||
+ | # combinations of 5,3 | ||
+ | c <- choose(n, | ||
+ | ans4 <- c*(p^r)*(q^(n-r)) | ||
+ | ans4 | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > q <- 1-p | ||
+ | > r <- 0 | ||
+ | > n <-5 | ||
+ | > # combinations of 5,3 | ||
+ | > c <- choose(n, | ||
+ | > ans4 <- c*(p^r)*(q^(n-r)) | ||
+ | > ans4 | ||
+ | [1] 0.2373047 | ||
+ | > </ | ||
+ | |||
+ | Ans 5 | ||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | n <- 5 | ||
+ | exp.x <- n*p | ||
+ | exp.x | ||
+ | </ | ||
+ | < | ||
+ | > q <- 1-p | ||
+ | > n <- 5 | ||
+ | > exp.x <- n*p | ||
+ | > exp.x | ||
+ | [1] 1.25</ | ||
+ | |||
+ | < | ||
+ | p <- .25 | ||
+ | q <- 1-p | ||
+ | n <- 5 | ||
+ | var.x <- n*p*q | ||
+ | var.x | ||
+ | </ | ||
+ | < | ||
+ | > q <- 1-p | ||
+ | > n <- 5 | ||
+ | > var.x <- n*p*q | ||
+ | > var.x | ||
+ | [1] 0.9375 | ||
+ | > </ | ||
+ | |||
+ | Q. 한 문제를 맞힐 확률은 1/4 이다. 총 여섯 문제가 있다고 할 때, 0에서 5 문제를 맞힐 확률은? dbinom을 이용해서 구하시오. | ||
+ | < | ||
+ | p <- 1/4 | ||
+ | q <- 1-p | ||
+ | n <- 6 | ||
+ | pbinom(5, n, p) | ||
+ | 1 - dbinom(6, n, p) | ||
+ | sum(dbinom(0: | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > p <- 1/4 | ||
+ | > q <- 1-p | ||
+ | > n <- 6 | ||
+ | > pbinom(5, n, p) | ||
+ | [1] 0.9997559 | ||
+ | > 1 - dbinom(6, n, p) | ||
+ | [1] 0.9997559 | ||
+ | |||
+ | </ | ||
+ | |||
+ | 중요 . . . . | ||
+ | < | ||
+ | # http:// | ||
+ | # ################################################################## | ||
+ | # | ||
+ | p <- 1/4 | ||
+ | q <- 1 - p | ||
+ | n <- 5 | ||
+ | r <- 0 | ||
+ | all.dens <- dbinom(0:n, n, p) | ||
+ | all.dens | ||
+ | sum(all.dens) | ||
+ | |||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | all.dens | ||
+ | |||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | choose(5, | ||
+ | sum(all.dens) | ||
+ | # | ||
+ | (p+q)^n | ||
+ | # note that n = whatever, (p+q)^n = 1 | ||
+ | |||
+ | </ | ||
+ | |||
+ | < | ||
+ | > # http:// | ||
+ | > # ################################################################## | ||
+ | > # | ||
+ | > p <- 1/4 | ||
+ | > q <- 1 - p | ||
+ | > n <- 5 | ||
+ | > r <- 0 | ||
+ | > all.dens <- dbinom(0:n, n, p) | ||
+ | > all.dens | ||
+ | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
+ | [5] 0.0146484375 0.0009765625 | ||
+ | > sum(all.dens) | ||
+ | [1] 1 | ||
+ | > | ||
+ | > choose(5, | ||
+ | [1] 0.2373047 | ||
+ | > choose(5, | ||
+ | [1] 0.3955078 | ||
+ | > choose(5, | ||
+ | [1] 0.2636719 | ||
+ | > choose(5, | ||
+ | [1] 0.08789062 | ||
+ | > choose(5, | ||
+ | [1] 0.01464844 | ||
+ | > choose(5, | ||
+ | [1] 0.0009765625 | ||
+ | > all.dens | ||
+ | [1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 | ||
+ | [5] 0.0146484375 0.0009765625 | ||
+ | > | ||
+ | > choose(5, | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | + | ||
+ | [1] 1 | ||
+ | > sum(all.dens) | ||
+ | [1] 1 | ||
+ | > # | ||
+ | > (p+q)^n | ||
+ | [1] 1 | ||
+ | > # note that n = whatever, (p+q)^n = 1 | ||
+ | > | ||
+ | </ | ||
+ |
binomial_distribution.1760131733.txt.gz · Last modified: by hkimscil