User Tools

Site Tools


binomial_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
binomial_distribution [2025/10/11 06:28] hkimscilbinomial_distribution [2025/10/11 08:26] (current) – [e.g.,] hkimscil
Line 7: Line 7:
   * 각 한문제를 맞힐 확률은 1/4, 틀릴 확률은 3/4   * 각 한문제를 맞힐 확률은 1/4, 틀릴 확률은 3/4
   * 3문제를 풀면서 (3번의 시행) 각 문제를 맞힐 확률 분포를 말한다.    * 3문제를 풀면서 (3번의 시행) 각 문제를 맞힐 확률 분포를 말한다. 
 +  * 기하분포의 경우, 각 문제를 맞히거나 틀리거나를 고려하지 않고 계속 틀리다가 언젠가 한번 맞힘으로써 사건이 끝난다. 
  
 {{:b:head_first_statistics:pasted:20191030-035316.png}} {{:b:head_first_statistics:pasted:20191030-035316.png}}
Line 55: Line 56:
  
  
- 
-====== Binomial Distribution ====== 
-  - 1번의 시행에서 특정 사건 A가 발생할 확률을 p라고 하면 
-  - n번의 (독립적인) 시행에서 사건 A가 발생할 때의 확률 분포를 
-  - 이항확률분포라고 한다. 
  
 \begin{eqnarray*} \begin{eqnarray*}
-{\choose x\displaystyle \frac {n!}{x!(n-x)! \\+P(X=2) & = & {{3} \choose {2}} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{3-2} \\ 
 +& = & 0.0694
 \end{eqnarray*} \end{eqnarray*}
  
-**The number of successes in n independent Bernoulli trials has a binomial distribution.** +<code> 
 +> dbinom(2, 3, 1/6) 
 +[1] 0.06944444 
 +>  
 +</code>
  
-이는 n 번의 독립적인 Bernoulli trials 로 볼 수 있다+====== Expectation and Variance of ====== 
-  * There are n independent trials +Toss a fair coin onceWhat is the distribution of the number of heads? 
-  * Each trial can result in one of two possible outcomes, labelled success and failure+  * A single trial 
-    * success can be a bad thing -- tire blow-up. +  * The trial can be one of two possible outcomes -- success and failure 
-  * P(success) = p+  * P(success) = p
   * P(failure) = 1-p   * P(failure) = 1-p
  
-일반적으로 binomial distribution은 아래와 같이 계산된다. +X = 0, 1 (failure and success) 
 +$P(X=x) = p^{x}(1-p)^{1-x}$ or  
 +$P(x) = p^{x}(1-p)^{1-x}$
  
-\begin{align*} +참고. 
-P(X=x) & = _{n}C_{x} \cdot p^{x} \cdot (1-p)^{n-x}, \;\; \text{for} \;\; x = 01, 2, . . ., n. \\ +    |           | 
-\text{or } & \\ +| p(x)  | q = (1-p)  | p  | 
-P(X=x) {{n} \choose {x}} \cdot p^{x} \cdot (1-p)^{n-x}, \;\; \text{for} \;\; x = 0, 1, 2, . . ., n. \\ +
-\end{align*}+
  
-A balanced dice is rolled 3 times. What is probability a 5 comes up exactly twice?+When x = 0 (failure), $P(X = 0) = p^{0}(1-p)^{1-0} = (1-p)$ = Probability of failure 
 +When x = 1 (success), $P(X = 1) = p^{1}(1-p)^{0} = p $ = Probability of success
  
-p = 1/6 + 
-3 +This is called Bernoulli distribution. 
-2+  * Bernoulli distribution expands to binomial distribution, geometric distribution, etc. 
 +  * Binomial distribution The distribution of number of success in n independent Bernoulli trials. 
 +  * Geometric distribution The distribution of number of trials to get the first success in independent Bernoulli trials. 
 + 
 +$$X \sim B(1,p)$$
  
 \begin{eqnarray*} \begin{eqnarray*}
-P(X=2) & = & {{3} \choose {2}} \left(\frac{1}{6}\right)^{2} \left(\frac{5}{6}\right)^{3-2\\ +E(X) & = & \sum{x * p(x)} \
-& = & 0.0694+& = & (0*q) + (1*p) \
 +& = & p  
 +\end{eqnarray* 
 + 
 + 
 +\begin{eqnarray*} 
 +Var(X) & = & E((X - E(X))^{2}\
 +& = & \sum_{x}(x-E(X))^2p(x)   \ldots \ldots \ldots E(X) = p \\ 
 +& = & (0 - p)^{2}*q + (1 - p)^{2}*p  \
 +& = & (0^2 - 2p0 + p^2)*q + (1-2p+p^2)*p \\ 
 +& = & p^2*(1-p) + (1-2p+p^2)*p \\ 
 +& = & p^2 - p^3 + p 2p^+ p^3 \\ 
 +& = & p - p^2 \\ 
 +& = & p(1-p) \\ 
 +& = & pq
 \end{eqnarray*} \end{eqnarray*}
  
 +For generalization, 
 +
 +$$X \sim B(n,p)$$
 +
 +\begin{eqnarray*}
 +E(X) & = & E(X_{1}) + E(X_{2}) + ... + E(X_{n}) \\
 +& = & n * E(X_{i}) \\
 +& = & n * p 
 +\end{eqnarray*}
 +
 +\begin{eqnarray*}
 +Var(X) & = & Var(X_{1}) + Var(X_{2}) + ... + Var(X_{n}) \\
 +& = & n * Var(X_{i}) \\
 +& = & n * p * q 
 +\end{eqnarray*}
 +
 +===== Proof of Binomial Expected Value and Variance =====
 +[[:Mean and Variance of Binomial Distribution|이항분포에서의 기댓값과 분산에 대한 수학적 증명]], Mathematical proof of Binomial Distribution Expected value and Variance
 +
 +====== e.g., ======
 +<WRAP box>
 +In the latest round of Who Wants To Win A Swivel Chair, there are 5 questions. The probability of
 +getting a successful outcome in a single trial is 0.25
 +  - What’s the probability of getting exactly two questions right?
 +  - What’s the probability of getting exactly three questions right? 
 +  - What’s the probability of getting two or three questions right? 
 +  - What’s the probability of getting no questions right?
 +  - What are the expectation and variance?
 +</WRAP>
 +
 +Ans 1. 
 <code> <code>
-dbinom(2, 3, 1/6+p <- .25 
-[1] 0.06944444+q <- 1-p 
 +r <- 2 
 +n <-5 
 +# combinations of 5,2 
 +c <- choose(n,r)  
 +ans1 <- c*(p^r)*(q^(n-r)) 
 +ans1    # or 
 + 
 +choose(n, r)*(p^r)*(q^(n-r)) 
 + 
 +dbinom(r, n, p) 
 + 
 +</code> 
 + 
 +<code> 
 +> p <- .25 
 +> q <- 1-p 
 +> r <- 2 
 +> n <-5 
 +> # combinations of 5,
 +> c <- choose(n,r) 
 +> ans <- c*(p^r)*(q^(n-r)) 
 +> ans 
 +[1] 0.2636719 
 +
 +> choose(n, r)*(p^r)*(q^(n-r)
 +[1] 0.2636719 
 +
 +> dbinom(r, n, p) 
 +[1] 0.2636719 
 +
  
 </code> </code>
Line 101: Line 182:
  
  
-\begin{eqnarray*} + 
-X \sim B(n, p) \\ + 
-\end{eqnarray*}+ 
 +Ans 2.  
 +<code> 
 +p <- .25 
 +q <- 1-p 
 +r <- 3 
 +n <-5 
 +# combinations of 5,3 
 +c <- choose(n,r) 
 +ans2 <- c*(p^r)*(q^(n-r)) 
 +ans2 
 + 
 +choose(n, r)*(p^r)*(q^(n-r)
 + 
 +dbinom(r, n, p) 
 + 
 +</code> 
 +<code> 
 +> p <- .25 
 +> q <- 1-p 
 +> r <- 3 
 +> n <-5 
 +> # combinations of 5,3 
 +> c <- choose(n,r) 
 +> ans2 <- c*(p^r)*(q^(n-r)) 
 +> ans2 
 +[1] 0.08789062 
 +>  
 +> choose(n,r)*(p^r)*(q^(n-r)) 
 +[1] 0.08789062 
 +>  
 +> dbinom(r, n, p) 
 +[1] 0.08789063 
 +>  
 +>  
 +</code> 
 + 
 +Ans 3. 중요  
 +<code> 
 +ans1 + ans2 
 +dbinom(2, 5, .25) + dbinom(3, 5, .25)  
 +dbinom(2:3, 5, .25) 
 +sum(dbinom(2:3, 5, .25)) 
 +pbinom(3, 5, .25) - pbinom(1, 5, .25) 
 +</code> 
 + 
 +<code> 
 +> ans1 + ans2 
 +[1] 0.3515625 
 +> dbinom(2, 5, .25) + dbinom(3, 5, .25)  
 +[1] 0.3515625 
 +> dbinom(2:3, 5, .25) 
 +[1] 0.26367187 0.08789063 
 +> sum(dbinom(2:3, 5, .25)) 
 +[1] 0.3515625 
 +> pbinom(3, 5, .25) - pbinom(1, 5, .25) 
 +[1] 0.3515625 
 +>  
 +</code> 
 + 
 +Ans 4.  
 +<code> 
 +p <- .25 
 +q <- 1-p 
 +r <- 0 
 +n <-5 
 +# combinations of 5,3 
 +c <- choose(n,r) 
 +ans4 <- c*(p^r)*(q^(n-r)) 
 +ans4 
 +</code> 
 + 
 +<code>> p <- .25 
 +> q <- 1-p 
 +> r <- 0 
 +> n <-5 
 +> # combinations of 5,3 
 +> c <- choose(n,r) 
 +> ans4 <- c*(p^r)*(q^(n-r)) 
 +> ans4 
 +[1] 0.2373047 
 +> </code> 
 + 
 +Ans 5 
 +<code> 
 +p <- .25 
 +q <- 1-p 
 +n <- 5 
 +exp.x <- n*p 
 +exp.x 
 +</code> 
 +<code>> p <- .25 
 +> q <- 1-p 
 +> n <- 5 
 +> exp.x <- n*p 
 +> exp.x 
 +[1] 1.25</code> 
 + 
 +<code> 
 +p <- .25 
 +q <- 1-p 
 +n <- 5 
 +var.x <- n*p*q 
 +var.x 
 +</code> 
 +<code>> p <- .25 
 +> q <- 1-p 
 +> n <- 5 
 +> var.x <- n*p*q 
 +> var.x 
 +[1] 0.9375 
 +> </code> 
 + 
 +Q. 한 문제를 맞힐 확률은 1/4 이다. 총 여섯 문제가 있다고 할 때, 0에서 5 문제를 맞힐 확률은? dbinom을 이용해서 구하시오. 
 +<code> 
 +p <- 1/4 
 +q <- 1-p 
 +n <- 6 
 +pbinom(5, n, p) 
 +1 - dbinom(6, n, p) 
 +sum(dbinom(0:5, n, p)) 
 +</code>  
 + 
 +<code> 
 +> p <- 1/4 
 +> q <- 1-p 
 +> n <- 6 
 +> pbinom(5, n, p) 
 +[1] 0.9997559 
 +> 1 - dbinom(6, n, p) 
 +[1] 0.9997559 
 + 
 +</code> 
 + 
 +중요 . . . .  
 +<code> 
 +# http://commres.net/wiki/mean_and_variance_of_binomial_distribution 
 +# ################################################################## 
 +
 +p <- 1/4 
 +q <- 1 - p 
 +n <- 5 
 +r <- 0 
 +all.dens <- dbinom(0:n, n, p) 
 +all.dens 
 +sum(all.dens) 
 + 
 +choose(5,0)*p^0*(q^(5-0)) 
 +choose(5,1)*p^1*(q^(5-1)) 
 +choose(5,2)*p^2*(q^(5-2)) 
 +choose(5,3)*p^3*(q^(5-3)) 
 +choose(5,4)*p^4*(q^(5-4)) 
 +choose(5,5)*p^5*(q^(5-5)) 
 +all.dens 
 + 
 +choose(5,0)*p^0*(q^(5-0)) +  
 +  choose(5,1)*p^1*(q^(5-1)) +  
 +  choose(5,2)*p^2*(q^(5-2)) +  
 +  choose(5,3)*p^3*(q^(5-3)) +  
 +  choose(5,4)*p^4*(q^(5-4)) +  
 +  choose(5,5)*p^5*(q^(5-5)) 
 +sum(all.dens) 
 +#  
 +(p+q)^n 
 +# note that n = whatever, (p+q)^n = 1 
 + 
 +</code> 
 + 
 +<code> 
 +> # http://commres.net/wiki/mean_and_variance_of_binomial_distribution 
 +> # ################################################################## 
 +> # 
 +> p <- 1/4 
 +> q <- 1 - p 
 +> n <- 5 
 +> r <- 0 
 +> all.dens <- dbinom(0:n, n, p) 
 +> all.dens 
 +[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 
 +[5] 0.0146484375 0.0009765625 
 +> sum(all.dens) 
 +[1] 1 
 +>  
 +> choose(5,0)*p^0*(q^(5-0)) 
 +[1] 0.2373047 
 +> choose(5,1)*p^1*(q^(5-1)) 
 +[1] 0.3955078 
 +> choose(5,2)*p^2*(q^(5-2)) 
 +[1] 0.2636719 
 +> choose(5,3)*p^3*(q^(5-3)) 
 +[1] 0.08789062 
 +> choose(5,4)*p^4*(q^(5-4)) 
 +[1] 0.01464844 
 +> choose(5,5)*p^5*(q^(5-5)) 
 +[1] 0.0009765625 
 +> all.dens 
 +[1] 0.2373046875 0.3955078125 0.2636718750 0.0878906250 
 +[5] 0.0146484375 0.0009765625 
 +>  
 +> choose(5,0)*p^0*(q^(5-0)) +  
 ++   choose(5,1)*p^1*(q^(5-1)) +  
 ++   choose(5,2)*p^2*(q^(5-2)) +  
 ++   choose(5,3)*p^3*(q^(5-3)) +  
 ++   choose(5,4)*p^4*(q^(5-4)) +  
 ++   choose(5,5)*p^5*(q^(5-5)) 
 +[1] 1 
 +> sum(all.dens) 
 +[1] 1 
 +> #  
 +> (p+q)^n 
 +[1] 1 
 +> # note that n = whatever, (p+q)^n = 1 
 +>  
 +</code> 
 + 
binomial_distribution.1760131733.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki