beta_coefficients
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
beta_coefficients [2019/05/21 12:01] – hkimscil | beta_coefficients [2020/12/09 18:47] (current) – [e.g.] hkimscil | ||
---|---|---|---|
Line 1: | Line 1: | ||
====== Beta coefficients in linear regression ====== | ====== Beta coefficients in linear regression ====== | ||
- | {{: | + | {{: |
- | $$ \beta = b * \frac{sd(x)}{sd(y)} | + | \begin{align*} |
+ | \large{\beta = b * \frac{sd(x)}{sd(y)}} \ | ||
+ | \end{align*} | ||
< | < | ||
Line 82: | Line 84: | ||
> | > | ||
</ | </ | ||
+ | ====== e.g. ====== | ||
+ | |||
+ | < | ||
+ | # get marketing data | ||
+ | marketing <- read.csv(" | ||
+ | head(marketing) | ||
+ | # note that I need - X to get rid of X column in the marketing data | ||
+ | mod <- lm(sales ~ . - X, data=marketing) | ||
+ | summary(mod) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > marketing <- read.csv(" | ||
+ | > head(marketing) | ||
+ | X youtube facebook newspaper sales | ||
+ | 1 1 276.12 | ||
+ | 2 2 | ||
+ | 3 3 | ||
+ | 4 4 181.80 | ||
+ | 5 5 216.96 | ||
+ | 6 6 | ||
+ | # note that I need - X to get rid of X column in the marketing data | ||
+ | > mod <- lm(sales ~ . - X, data=marketing) | ||
+ | > summary(mod) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = sales ~ . - X, data = marketing) | ||
+ | |||
+ | Residuals: | ||
+ | | ||
+ | -10.5932 | ||
+ | |||
+ | Coefficients: | ||
+ | | ||
+ | (Intercept) | ||
+ | youtube | ||
+ | facebook | ||
+ | newspaper | ||
+ | --- | ||
+ | Signif. codes: | ||
+ | |||
+ | Residual standard error: 2.023 on 196 degrees of freedom | ||
+ | Multiple R-squared: | ||
+ | F-statistic: | ||
+ | </ | ||
+ | |||
+ | |||
+ | |||
+ | < | ||
+ | install.packages(lm.beta) | ||
+ | library(lm.beta) | ||
+ | lm.beta(mod) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | lm.beta(mod) | ||
+ | |||
+ | Call: | ||
+ | lm(formula = sales ~ . - X, data = marketing) | ||
+ | |||
+ | Standardized Coefficients:: | ||
+ | | ||
+ | | ||
+ | > | ||
+ | </ | ||
+ | |||
+ | These beta coefficients also can be got from the coefficents from standardized data. | ||
+ | |||
+ | < | ||
+ | mod.formula <- sales ~ youtube + facebook + newspaper | ||
+ | all.vars(mod.formula) | ||
+ | marketing.temp <- sapply(marketing[ , all.vars(mod.formula)], | ||
+ | head(marketing.temp) | ||
+ | mod.scaled <- lm(sales ~ ., data=marketing.scaled) | ||
+ | head(marketing.scaled) | ||
+ | coefficients(mod.scaled) | ||
+ | </ | ||
+ | |||
+ | < | ||
+ | > all.vars(mod.formula) | ||
+ | [1] " | ||
+ | > marketing.temp <- sapply(marketing[ , all.vars(mod.formula)], | ||
+ | > head(marketing.temp) | ||
+ | sales | ||
+ | [1,] 1.5481681 | ||
+ | [2,] -0.6943038 -1.19437904 | ||
+ | [3,] -0.9051345 -1.51235985 | ||
+ | [4,] 0.8581768 | ||
+ | [5,] -0.2151431 | ||
+ | [6,] -1.3076295 -1.61136487 | ||
+ | > mod.scaled <- lm(sales ~ ., data=marketing.scaled) | ||
+ | > head(marketing.scaled) | ||
+ | | ||
+ | 1 1.5481681 | ||
+ | 2 -0.6943038 -1.19437904 | ||
+ | 3 -0.9051345 -1.51235985 | ||
+ | 4 0.8581768 | ||
+ | 5 -0.2151431 | ||
+ | 6 -1.3076295 -1.61136487 | ||
+ | > coefficients(mod.scaled) | ||
+ | (Intercept) | ||
+ | -5.034110e-16 | ||
+ | > | ||
+ | > </ | ||
+ | |||
+ | check out that | ||
+ | '' | ||
+ | |||
+ | and | ||
+ | 베타를 구하고 나면 서로의 계수값을 절대비교할 수 있다. | ||
+ | '' | ||
+ | '' | ||
+ | |||
beta_coefficients.1558407716.txt.gz · Last modified: 2019/05/21 12:01 by hkimscil