User Tools

Site Tools


bayes_theorem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bayes_theorem [2025/09/20 20:50] hkimscilbayes_theorem [2025/09/21 22:35] (current) hkimscil
Line 1: Line 1:
 ====== Bayes' Theorem ====== ====== Bayes' Theorem ======
-\begin{eqnarray}+<WRAP left> 
 +\begin{eqnarray*}
 P(A \mid B) & = & \dfrac{P(A \cap B)}{P(B)}  \nonumber \\ P(A \mid B) & = & \dfrac{P(A \cap B)}{P(B)}  \nonumber \\
 P(B \mid A) & = & \dfrac{P(B \cap A)}{P(A)}  \nonumber \\ P(B \mid A) & = & \dfrac{P(B \cap A)}{P(A)}  \nonumber \\
-\text{heance } & &  \nonumber \\+\text{heance }   \nonumber \\
 P(A \cap B) & = & P(A \mid B) * P(B) \;\; \text{ and    \nonumber \\ P(A \cap B) & = & P(A \mid B) * P(B) \;\; \text{ and    \nonumber \\
-P(B \cap A) & = & P(B \mid A) * P(A)  \\+P(B \cap A) & = & P(B \mid A) * P(A) \qquad\qquad\qquad\qquad\qquad\qquad\qquad (1) \\
  \nonumber \\  \nonumber \\
  \nonumber \\  \nonumber \\
 P(B) & = & P(A \cap B) + P(\neg A \cap B)  \nonumber \\ P(B) & = & P(A \cap B) + P(\neg A \cap B)  \nonumber \\
 & = & P(B \cap A) + P(B \cap \neg A)  \nonumber \\ & = & P(B \cap A) + P(B \cap \neg A)  \nonumber \\
-& = & P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A) \\ +& = & P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A) \qquad\qquad (2) \\ 
- \nonumber \\ +\\ 
- \nonumber \\ +\\
-\text{suppose that we not know  }  P(B) \nonumber \\+
 P(A \mid B) & = & \dfrac{P(A \cap B)}{P(B)} \nonumber  \\ P(A \mid B) & = & \dfrac{P(A \cap B)}{P(B)} \nonumber  \\
 & = & \dfrac{P(B \cap A)}{P(B)} \;\;\; \text{ from (1) and (2)  } \nonumber  \\ & = & \dfrac{P(B \cap A)}{P(B)} \;\;\; \text{ from (1) and (2)  } \nonumber  \\
 & = & \dfrac {(1)} {(2)} \nonumber \\ & = & \dfrac {(1)} {(2)} \nonumber \\
-& = & \dfrac {P(B \mid A) * P(A)} {P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A)} \\+& = & \dfrac {P(B \mid A) * P(A)} {P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A)}  \qquad\qquad (3) \\ 
 + 
 + 
 +\end{eqnarray*} 
 +</WRAP> 
 +<WRAP clear /> 
 + 
 + 
 + 
 +<WRAP box left> 
 +\begin{eqnarray} 
 +& & P(A \mid B) = \dfrac{P(A \cap B)}{P(B)}  \nonumber \\ 
 +& & P(B \mid A) = \dfrac{P(B \cap A)}{P(A)}  \nonumber \\ 
 +& & \text{heance }   \nonumber \\ 
 +& & P(A \cap B) = P(A \mid B) * P(B) \;\; \text{ and    \nonumber \\ 
 +& & P(B \cap A) = P(B \mid A) * P(A)  \\ 
 + \nonumber \\ 
 + \nonumber \\ 
 +& & P(B) = P(A \cap B) + P(\neg A \cap B)  \nonumber \\ 
 +& & = P(B \cap A) + P(B \cap \neg A)  \nonumber \\ 
 +& & = P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A) \\ 
 + \nonumber \\ 
 + \nonumber \\ 
 +& & \text{suppose that we not know  }  P(B) \nonumber \\ 
 +& & P(A \mid B) = \dfrac{P(A \cap B)}{P(B)} \nonumber  \\ 
 +& & = \dfrac{P(B \cap A)}{P(B)} \;\;\; \text{ from (1) and (2)  } \nonumber  \\ 
 +& & = \dfrac {(1)} {(2)} \nonumber \\ 
 +& & = \dfrac {P(B \mid A) * P(A)} {P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A)} \\
 \end{eqnarray} \end{eqnarray}
 +</WRAP>
 +<WRAP clear />
  
 {{youtube>NIqeFYUhSzU}} {{youtube>NIqeFYUhSzU}}
bayes_theorem.1758369011.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki