User Tools

Site Tools


bayes_theorem

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
bayes_theorem [2025/09/19 19:56] hkimscilbayes_theorem [2025/09/21 22:35] (current) hkimscil
Line 1: Line 1:
 ====== Bayes' Theorem ====== ====== Bayes' Theorem ======
 +<WRAP left>
 \begin{eqnarray*} \begin{eqnarray*}
-\text{c.f.,} \\ +P(A \mid B) & = & \dfrac{P(A \cap B)}{P(B)}  \nonumber \\ 
-& & P(A|B) = \dfrac{P(A \cap B)}{P(B)\\ +P(B \mid A) \dfrac{P(B \cap A)}{P(A)}  \nonumber \\ 
-& & P(B|A) = \dfrac{P(\cap A)}{P(A)} \\ +\text{heance }   \nonumber \\ 
-\neg{A} \\ +P(A \cap B) & P(A \mid B) * P(B) \;\; \textand    \nonumber \\ 
-\sim{A} \\ +P(B \cap A) & = & P(B \mid A) * P(A) \qquad\qquad\qquad\qquad\qquad\qquad\qquad (1) \\ 
-\thicksim{A} \\+ \nonumber \\ 
 + \nonumber \\ 
 +P(B) & = & P(A \cap B) P(\neg A \cap B)  \nonumber \\ 
 +& P(B \cap A) + P(B \cap \neg A)  \nonumber \\ 
 +& P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A) \qquad\qquad (2) \\ 
 +\\ 
 +\\ 
 +P(A \mid B) & = & \dfrac{P(\cap B)}{P(B)} \nonumber  \\ 
 +& = & \dfrac{P(B \cap A)}{P(B)\;\;\; \text{ from (1) and (2)  } \nonumber  \\ 
 +& = & \dfrac {(1)} {(2)\nonumber \\ 
 +& = & \dfrac {P(B \mid A) * P(A){P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A)}  \qquad\qquad (3) \\ 
 + 
 \end{eqnarray*} \end{eqnarray*}
 +</WRAP>
 +<WRAP clear />
 +
 +
 +
 +<WRAP box left>
 +\begin{eqnarray}
 +& & P(A \mid B) = \dfrac{P(A \cap B)}{P(B)}  \nonumber \\
 +& & P(B \mid A) = \dfrac{P(B \cap A)}{P(A)}  \nonumber \\
 +& & \text{heance }   \nonumber \\
 +& & P(A \cap B) = P(A \mid B) * P(B) \;\; \text{ and    \nonumber \\
 +& & P(B \cap A) = P(B \mid A) * P(A)  \\
 + \nonumber \\
 + \nonumber \\
 +& & P(B) = P(A \cap B) + P(\neg A \cap B)  \nonumber \\
 +& & = P(B \cap A) + P(B \cap \neg A)  \nonumber \\
 +& & = P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A) \\
 + \nonumber \\
 + \nonumber \\
 +& & \text{suppose that we not know  }  P(B) \nonumber \\
 +& & P(A \mid B) = \dfrac{P(A \cap B)}{P(B)} \nonumber  \\
 +& & = \dfrac{P(B \cap A)}{P(B)} \;\;\; \text{ from (1) and (2)  } \nonumber  \\
 +& & = \dfrac {(1)} {(2)} \nonumber \\
 +& & = \dfrac {P(B \mid A) * P(A)} {P(B \mid A) * P(A) + P(B \mid \neg A) * P(\neg A)} \\
 +\end{eqnarray}
 +</WRAP>
 +<WRAP clear />
 +
 +{{youtube>NIqeFYUhSzU}}
bayes_theorem.1758279410.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki