b:head_first_statistics:visualization
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:visualization [2020/09/07 12:32] – [Pie Chart] hkimscil | b:head_first_statistics:visualization [2025/09/08 08:22] (current) – [Histogram Modality] hkimscil | ||
---|---|---|---|
Line 31: | Line 31: | ||
* 각 게임 장르별 사용자의 만족도 퍼센티지를 모아 놓은 파이차트는 유용하지 않다. | * 각 게임 장르별 사용자의 만족도 퍼센티지를 모아 놓은 파이차트는 유용하지 않다. | ||
====== Bar chart ====== | ====== Bar chart ====== | ||
+ | {{good.bar.chart.jpg? | ||
+ | * region 별 sales | ||
+ | * 대륙 별 sales | ||
+ | * 분기 별 수익률 | ||
+ | * 카테고리화한 종류 별 숫자기록 (일반화) | ||
+ | {{good.bar.chart.2.png? | ||
+ | * 장르 별 만족도 | ||
+ | * (우리 회사) 부서별 성취도 | ||
+ | |||
+ | ====== Histogram ====== | ||
+ | ^ ser ^ freq ^ | ||
+ | | 1 | 100 | | ||
+ | | 2 | 88 | | ||
+ | | 3 | 159 | | ||
+ | | 4 | 201 | | ||
+ | | 5 | 250 | | ||
+ | | 6 | 250 | | ||
+ | | 7 | 254 | | ||
+ | | 8 | 288 | | ||
+ | | 9 | 356 | | ||
+ | | 10 | 380 | | ||
+ | | 11 | 430 | | ||
+ | | 12 | 450 | | ||
+ | | 13 | 433 | | ||
+ | | 14 | 543 | | ||
+ | | 15 | 540 | | ||
+ | | 16 | 570 | | ||
+ | | 17 | 450 | | ||
+ | | 18 | 433 | | ||
+ | | 19 | 543 | | ||
+ | | 20 | 690 | | ||
+ | | 21 | 640 | | ||
+ | | 22 | 720 | | ||
+ | | 23 | 777 | | ||
+ | | 24 | 720 | | ||
+ | | 25 | 880 | | ||
+ | | 26 | 900 | | ||
+ | |||
+ | Excel에서의 histogram | ||
+ | |||
+ | | Bin | Frequency | ||
+ | | 199 | 3 | | ||
+ | | 399 | 7 | | ||
+ | | 599 | 9 | | ||
+ | | 799 | 5 | | ||
+ | | 999 | 2 | | ||
+ | |||
+ | {{: | ||
+ | |||
+ | in R . . . . | ||
+ | < | ||
+ | dat <- c(100, 88, 159, 201, 250, 250, 254, 288, 356, 380, | ||
+ | 430, 450, 433, 543, 540, 570, 450, 433, 543, 690, | ||
+ | 640, 720, 777, 720, 880, 900) | ||
+ | dat | ||
+ | hist(dat) | ||
+ | hist(dat, breaks=5) | ||
+ | </ | ||
+ | {{: | ||
+ | |||
+ | < | ||
+ | dat.iq <- rnorm(1000, 100, 15) | ||
+ | head(dat.iq) | ||
+ | tail(dat.iq) | ||
+ | head(dat.iq, | ||
+ | tail(dat.iq, | ||
+ | |||
+ | mean(dat.iq) | ||
+ | sd(dat.iq) | ||
+ | |||
+ | hist(dat.iq) | ||
+ | hist(dat.iq, | ||
+ | |||
+ | set.seed(101) | ||
+ | dat.iq <- rnorm(1000, 100, 15) | ||
+ | head(dat.iq) | ||
+ | tail(dat.iq) | ||
+ | head(dat.iq, | ||
+ | tail(dat.iq, | ||
+ | |||
+ | mean(dat.iq) | ||
+ | sd(dat.iq) | ||
+ | |||
+ | hist(dat.iq) | ||
+ | hist(dat.iq, | ||
+ | </ | ||
====== Scatter plot ====== | ====== Scatter plot ====== | ||
- | + | < | |
+ | hist(mtcars$hp) | ||
+ | |||
+ | mpg cyl disp hp drat wt qsec vs am gear carb | ||
+ | Mazda RX4 | ||
+ | Mazda RX4 Wag | ||
+ | Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1 | ||
+ | Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1 | ||
+ | Hornet Sportabout | ||
+ | Valiant | ||
+ | Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4 | ||
+ | Merc 240D | ||
+ | Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2 | ||
+ | Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4 | ||
+ | Merc 280C | ||
+ | Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3 | ||
+ | Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3 | ||
+ | Merc 450SLC | ||
+ | Cadillac Fleetwood | ||
+ | Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4 | ||
+ | Chrysler Imperial | ||
+ | Fiat 128 32.4 | ||
+ | Honda Civic | ||
+ | Toyota Corolla | ||
+ | Toyota Corona | ||
+ | Dodge Challenger | ||
+ | AMC Javelin | ||
+ | Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4 | ||
+ | Pontiac Firebird | ||
+ | Fiat X1-9 | ||
+ | Porsche 914-2 | ||
+ | Lotus Europa | ||
+ | Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4 | ||
+ | Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6 | ||
+ | Maserati Bora | ||
+ | Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2 | ||
+ | </ | ||
+ | {{: | ||
- | < | + | < |
attach(mtcars) | attach(mtcars) | ||
plot(wt, mpg, main=" | plot(wt, mpg, main=" | ||
Line 41: | Line 165: | ||
| | ||
- | {{:c:ps1-1:2019:pasted:20190909-075028.png}} | + | {{:b:head_first_statistics:pasted:20240904-083016.png}} |
explanatory (설명) variable at x axis | explanatory (설명) variable at x axis | ||
Line 49: | Line 173: | ||
Drawing a line among the data. | Drawing a line among the data. | ||
+ | |||
< | < | ||
abline(lm(mpg~wt), | abline(lm(mpg~wt), | ||
- | lines(lowess(wt, | + | </ |
- | {{:c:ps1-1:2019:pasted:20190909-075639.png}} | + | {{:b:head_first_statistics:pasted:20240904-083157.png}} |
+ | Outlier에 대한 주의 | ||
+ | [{{: | ||
+ | <WRAP clear /> | ||
- | A bit more fancy line | ||
- | < | ||
- | # by Number of Car Cylinders | ||
- | library(car) | ||
- | scatterplot(mpg ~ wt | cyl, data=mtcars, | ||
- | | ||
- | | ||
- | | ||
- | {{: | ||
- | Line can be: | + | ====== Presentation ====== |
+ | For a very good example, see | ||
+ | https:// | ||
+ | * Life expectancy data: {{: | ||
- | **__관계의 방향 (direction)__** | + | <WRAP clear/> |
- | ^ 관계의 방향 | + | ====== Histogram skewedness ====== |
- | | {{:r.positive.png}} | {{: | + | <WRAP column half> |
+ | < | ||
+ | #### | ||
+ | # left-skewed distribution | ||
+ | # 1. | ||
+ | set.seed(1) | ||
+ | data <- rbeta(500, shape1 = 10, shape2 = 2) | ||
+ | hist(data, probability = TRUE, | ||
+ | main = " | ||
+ | xlab = " | ||
+ | col = " | ||
+ | # 2. | ||
+ | # install.packages(" | ||
+ | library(fitdistrplus) | ||
- | **__관계의 모양 | + | fit <- fitdist(data, " |
- | ^ 관계의 모양 | + | alpha_est <- fit$estimate[" |
- | | {{: | + | beta_est <- fit$estimate[" |
- | **__관계의 정도 (힘)__** | + | # 3. |
- | ^ 관계의 정도 (힘) ^^ | + | curve(dbeta(x, shape1 = alpha_est, shape2 = beta_est), |
- | | [{{: | + | add = TRUE, col = " |
- | | [{{: | + | </ |
- | <WRAP clear /> | + | </WRAP> |
- | Pearson' | + | |
- | __Relations, | + | |
- | [{{: | + | |
- | <WRAP clear /> | + | |
- | __Interpretation with limited range__ | + | <WRAP column half> |
- | [{{:r_eg.15.71.png? | + | {{:b:head_first_statistics: |
- | [{{:r_eg.15.7b1.png?250 |Figure_7._Correlation_And_Range}}] | + | </ |
- | 데이터의 [[Range]]에 대한 판단에 신중해야 한다. 왜냐 하면, 데이터의 어느 곳을 자르느냐에 따라서 r 값이 심하게 변하기 때문이다. | + | <WRAP clear/> |
- | <WRAP clear /> | + | <WRAP column half> |
- | __Outliers__ | + | < |
- | [{{: | + | set.seed(1) |
- | [{{:r_eg.15.8b.png? | + | data <- rbeta(500, shape1 = 10, shape2 = 10) |
- | 위의 설명과 관련하여, 만약에 아주 심한 Outlier가 존재한다면 두 변인 간의 상관관계에 심한 영향을 준다. | + | hist(data, probability = TRUE, |
- | [{{: | + | main = " |
+ | xlab = " | ||
+ | col = " | ||
- | make it sure that there is __no data entry error__. | + | # 2. |
- | {{:r.crime.scatterplot.for.single.by.state.jpg}} | + | # install.packages(" |
+ | library(fitdistrplus) | ||
+ | fit <- fitdist(data, | ||
+ | alpha_est <- fit$estimate[" | ||
+ | beta_est <- fit$estimate[" | ||
- | <WRAP clear /> | + | # 3. |
+ | curve(dbeta(x, | ||
+ | add = TRUE, col = " | ||
+ | </code> | ||
+ | </WRAP> | ||
- | see | + | <WRAP column half> |
- | https:// | + | {{:b:head_first_statistics:pasted:20250903-074830.png}} |
- | * Histogram | + | </ |
- | {{:c:ps1-1:2019:pasted:20190909-103341.png}} | + | |
- | * Life expectancy data: {{: | + | |
+ | <WRAP clear/> | ||
+ | <WRAP column half> | ||
< | < | ||
- | le <- as.data.frame(read.csv("http:// | + | ## |
- | colnames(le)[1] <- "c.code" | + | # right-skewed distribution |
- | lea <- le$X2017 | + | # 1. |
- | leb <- lea[complete.cases(lea)] | + | set.seed(1) |
- | hist(leb, color="grey") | + | data <- rbeta(500, shape1 = 2, shape2 = 10) |
+ | hist(data, probability = TRUE, | ||
+ | main = "Histogram with Right-skewed Distribution", | ||
+ | | ||
+ | col = " | ||
+ | |||
+ | # install.packages(" | ||
+ | library(fitdistrplus) | ||
+ | |||
+ | fit <- fitdist(data, | ||
+ | alpha_est | ||
+ | beta_est | ||
+ | |||
+ | # | ||
+ | curve(dbeta(x, shape1 = alpha_est, shape2 = beta_est), | ||
+ | add = TRUE, col = "red", lwd = 2) | ||
</ | </ | ||
+ | </ | ||
+ | <WRAP column half> | ||
+ | {{: | ||
+ | </ | ||
+ | <WRAP clear/> | ||
- | [{{:c:ps1-1: | + | ====== Histogram Modality====== |
+ | <WRAP column half> | ||
+ | Unimodal | ||
+ | < | ||
+ | ### unimodal data | ||
+ | set.seed(1) | ||
+ | d.1 <- rnorm(500, 10, 2) | ||
+ | hist(d.1, breaks = 30, probability = T, | ||
+ | main = "Hist with Unimodal distrib", | ||
+ | xlab = " | ||
+ | col = " | ||
+ | lines(density(d.1), | ||
+ | col = " | ||
+ | </ | ||
+ | </ | ||
- | [{{:c:ps1-1:2019:pasted:20190909-104759.png|Distribution of temperature}}] | + | <WRAP column half> |
+ | {{:b:head_first_statistics:pasted:20250903-083409.png}} | ||
+ | </ | ||
- | [{{:c:ps1-1:2019:pasted:20190909-111117.png|skewness}}] | + | <WRAP clear/> |
+ | |||
+ | Bimodal distribution | ||
+ | <WRAP column half> | ||
+ | < | ||
+ | ### bimodal data | ||
+ | set.seed(1) | ||
+ | d.1 <- rnorm(500, 10, 2) | ||
+ | d.2 <- rnorm(500, 20, 2) | ||
+ | d.all <- c(d.1, d.2) | ||
+ | hist(d.all, breaks = 30, probability = T, | ||
+ | main = "Hist with bimodal distrib", | ||
+ | xlab = " | ||
+ | col = " | ||
+ | lines(density(d.all), | ||
+ | col = " | ||
+ | </ | ||
+ | </ | ||
+ | |||
+ | <WRAP column half> | ||
+ | {{:b:head_first_statistics: | ||
+ | </ | ||
+ | <WRAP clear/> | ||
+ | |||
+ | <WRAP column half> | ||
+ | < | ||
+ | ### multi-modal data | ||
+ | # Parameters for the first normal distribution (Mode 1) | ||
+ | m.1 <- 50 | ||
+ | sd.1 <- 5 | ||
+ | |||
+ | # Parameters for the second normal distribution (Mode 2) | ||
+ | m.2 <- 100 | ||
+ | sd.2 <- 15 | ||
+ | |||
+ | m.3 <- 160 | ||
+ | sd.3 <- 6 | ||
+ | |||
+ | # Mixing proportion for Mode 1 | ||
+ | prop.1 <- 0.3 | ||
+ | # Mixing proportion for Mode 2 | ||
+ | prop.2 <- 0.6 # This is 1 - prop1 | ||
+ | # Mixing proportion for Mode 2 | ||
+ | prop.3 <- 1.0 # This is 1 - prop1 | ||
+ | |||
+ | # Number of samples to generate | ||
+ | n.sam <- 1000 | ||
+ | |||
+ | # Create an empty vector to store the combined samples | ||
+ | |||
+ | mm.dist <- numeric(n.sam) | ||
+ | set.seed(1) | ||
+ | for (i in 1:n.sam) { | ||
+ | # Randomly choose which distribution to sample from | ||
+ | tmp <- runif(1) | ||
+ | if (tmp < prop.1) { | ||
+ | mm.dist[i] <- rnorm(1, mean = m.1, sd = sd.1) | ||
+ | } else if (tmp < prop.2) { | ||
+ | mm.dist[i] <- rnorm(1, mean = m.2, sd = sd.2) | ||
+ | } else { | ||
+ | mm.dist[i] <- rnorm(1, mean = m.3, sd = sd.3) | ||
+ | } | ||
+ | |||
+ | } | ||
+ | |||
+ | hist(mm.dist, | ||
+ | main = " | ||
+ | xlab = " | ||
+ | freq = FALSE, probability = T, | ||
+ | col = " | ||
+ | lines(density(mm.dist), | ||
+ | col = " | ||
+ | |||
+ | </ | ||
+ | </ | ||
+ | <WRAP column half> | ||
+ | {{: | ||
+ | </ | ||
+ | <WRAP clear/> | ||
- | [{{: | ||
- | box plot | + | ====== |
+ | <WRAP column half> | ||
< | < | ||
# Boxplot of MPG by Car Cylinders | # Boxplot of MPG by Car Cylinders | ||
Line 133: | Line 388: | ||
ylab=" | ylab=" | ||
</ | </ | ||
- | {{: | + | </ |
+ | <WRAP column half> | ||
+ | {{: | ||
+ | </ | ||
+ | <WRAP clear/> | ||
+ | ====== see also ====== | ||
+ | https:// | ||
b/head_first_statistics/visualization.1599449521.txt.gz · Last modified: 2020/09/07 12:32 by hkimscil