User Tools

Site Tools


b:head_first_statistics:using_the_normal_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:using_the_normal_distribution [2025/10/08 12:02] – [X - Y] hkimscilb:head_first_statistics:using_the_normal_distribution [2025/10/09 06:26] (current) – [X - Y] hkimscil
Line 513: Line 513:
 rnorm(n, mean = 0, sd = 1) rnorm(n, mean = 0, sd = 1)
 </code> </code>
-</WRAP> 
-[{{  :b:head_first_statistics:pasted:20201204-175705.png  }}] 
- 
- 
  
 +{{:b:head_first_statistics:pasted:20201204-175705.png?500}}
 따라서  따라서 
 $$P(X + Y < 380) = 0.9082409 $$ $$P(X + Y < 380) = 0.9082409 $$
 +</WRAP>
  
 ===== exercise ===== ===== exercise =====
-<WRAP info>+<WRAP box>
 Julie’s matchmaker is at it again. What's the **probability that a man will be at least 5 inches taller than a woman**? In Statsville, the height of men in inches is distributed as N(71, 20.25), and the height of women in inches is distributed as N(64, 16). Julie’s matchmaker is at it again. What's the **probability that a man will be at least 5 inches taller than a woman**? In Statsville, the height of men in inches is distributed as N(71, 20.25), and the height of women in inches is distributed as N(64, 16).
 </WRAP> </WRAP>
Line 532: Line 530:
  
 **probability that a man will be at least 5 inches taller than a woman**? = "probability that a man will be at least 5 inches taller than (an average) woman" 이므로 $P(X > F + 5)$ 을 구하라는 문제.  **probability that a man will be at least 5 inches taller than a woman**? = "probability that a man will be at least 5 inches taller than (an average) woman" 이므로 $P(X > F + 5)$ 을 구하라는 문제. 
 +
 \begin{align*} \begin{align*}
 P(X > F + 5) & = P(X - F > 5) P(X > F + 5) & = P(X - F > 5)
Line 594: Line 593:
 {{:b:head_first_statistics:pasted:20191114-080220.png}} {{:b:head_first_statistics:pasted:20191114-080220.png}}
  
-<WRAP info>+<WRAP box>
 Q: So what’s the difference between linear transforms and independent observations? Q: So what’s the difference between linear transforms and independent observations?
 A: Linear transforms affect the underlying values in your probability distribution. As an example, if you have a length of rope of a particular length, then applying a linear transform affects the length of the rope. Independent observations have to do with the quantity of things you’re dealing with. As an example, if you have n independent observations of a piece of rope, then you’re talking about n pieces of rope. In general, __if the quantity changes__, you’re dealing with **independent observations**. __If the underlying values change__, then you’re dealing with a **transform**. A: Linear transforms affect the underlying values in your probability distribution. As an example, if you have a length of rope of a particular length, then applying a linear transform affects the length of the rope. Independent observations have to do with the quantity of things you’re dealing with. As an example, if you have n independent observations of a piece of rope, then you’re talking about n pieces of rope. In general, __if the quantity changes__, you’re dealing with **independent observations**. __If the underlying values change__, then you’re dealing with a **transform**.
Line 622: Line 621:
 [1] 0.9452007 [1] 0.9452007
 # 혹은 # 혹은
-> pnorm(800, 720, sqrt(2500), lower.tail = TRUE)+> pnorm(800, 720, sqrt(2500),  
 +>       lower.tail = TRUE)
 [1] 0.9452007 [1] 0.9452007
 </code> </code>
Line 632: Line 632:
 Before going further:  Before going further: 
  
-<WRAP alert>+<WRAP info>
 So what’s the probability of getting 30 or more questions right out of 40? That will help us determine whether to keep playing, or walk away. So what’s the probability of getting 30 or more questions right out of 40? That will help us determine whether to keep playing, or walk away.
 </WRAP> </WRAP>
  
  
-<WRAP info>+<WRAP box>
 There are 40 questions, which means there are 40 trials.  There are 40 questions, which means there are 40 trials. 
  
Line 651: Line 651:
  
 </WRAP> </WRAP>
-<WRAP center info>+<WRAP box>
 <code> <code>
 > pbinom(29,40, 1/4, lower.tail = F) > pbinom(29,40, 1/4, lower.tail = F)
Line 776: Line 776:
 {{:b:head_first_statistics:pasted:20191118-095652.png}} {{:b:head_first_statistics:pasted:20191118-095652.png}}
  
-<WRAP info>+<WRAP box>
 이를 R을 이용하여 구하면,  이를 R을 이용하여 구하면, 
 <code> <code>
Line 843: Line 843:
 이 값은 위의 0.387에 근사하다.  이 값은 위의 0.387에 근사하다. 
  
-<WRAP info>+<WRAP box>
   * In particular circumstances you can **use the normal distribution to approximate the binomial**. If X ~ B(n, p) and np > 5 and nq > 5 then you can approximate X using X ~ N(np, npq)   * In particular circumstances you can **use the normal distribution to approximate the binomial**. If X ~ B(n, p) and np > 5 and nq > 5 then you can approximate X using X ~ N(np, npq)
   * If you’re approximating the binomial distribution with the normal distribution, then you need to **<fc #ff0000>apply a continuity correction</fc>** to make sure your results are accurate.   * If you’re approximating the binomial distribution with the normal distribution, then you need to **<fc #ff0000>apply a continuity correction</fc>** to make sure your results are accurate.
Line 850: Line 850:
 {{:b:head_first_statistics:pasted:20191118-103328.png}} {{:b:head_first_statistics:pasted:20191118-103328.png}}
  
-<WRAP info>+<WRAP box>
 Q:Does it really save time to approximate the binomial distribution with the normal? Q:Does it really save time to approximate the binomial distribution with the normal?
  
Line 873: Line 873:
 ===== Pool Puzzle ===== ===== Pool Puzzle =====
 <wrap #continuity_correction_egs /> <wrap #continuity_correction_egs />
-<WRAP help>+<WRAP box>
 X < 3  ----  <wrap spoiler> X < 2.5 </wrap> X < 3  ----  <wrap spoiler> X < 2.5 </wrap>
 X > 3  ----  <wrap spoiler> X > 3.5 </wrap> X > 3  ----  <wrap spoiler> X > 3.5 </wrap>
b/head_first_statistics/using_the_normal_distribution.1759892568.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki