User Tools

Site Tools


b:head_first_statistics:using_the_normal_distribution

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:using_the_normal_distribution [2023/11/01 08:23] – [Apply a continuity correction] hkimscilb:head_first_statistics:using_the_normal_distribution [2024/10/28 08:09] (current) – […then squash the width] hkimscil
Line 88: Line 88:
  
 ===== So how do we find normal probabilities? ===== ===== So how do we find normal probabilities? =====
 +평균이 0 이고 표준편차가 1일 Normal distribution 에서의 probabilities는 아래의 PDF 파일과 같이 구해 놓은 값이 있다 
 +(R을 이용하지 않는다면). [[https://ux1.eiu.edu/~aalvarado2/z_table.pdf|z table]] 링크
 +평균과 표준편차 값이 0, 1이 아닌 다른 값을 같는 분포는 0, 1 이 되도록 변환한 후에 probability를 구한다 (표준점수화). 
 +
 +
 {{:b:head_first_statistics:pasted:20191106-070200.png}} {{:b:head_first_statistics:pasted:20191106-070200.png}}
  
Line 132: Line 137:
 z & = & \displaystyle \frac {x - \mu}{\sigma} \\ z & = & \displaystyle \frac {x - \mu}{\sigma} \\
 & = & \frac {64-71} {4.5} \\ & = & \frac {64-71} {4.5} \\
-& = & 1.56+& = & 1.56
 \end{eqnarray*} \end{eqnarray*}
  
-따라서, 표준점수를 1.56을 가지고 표준점수 테이블에서 1.56보다 큰 부분의 면적을 구한것을 참조하면 된다. +따라서, 표준점수를 -1.56을 가지고 표준점수 테이블에서 -1.56보다 큰 부분의 면적을 구한것을 참조하면 된다. 
  
-<code>> a <- c(1:100) +<code> 
-scale(a) +> 1 - pnorm(-1.56) 
-              [,1+[1] 0.9406201 
-  [1,] -1.70622042 +> pnorm(-1.56lower.tail = FALSE) 
-  [2,] -1.67175132 +[1] 0.9406201 
-  [3,] -1.63728222 +> pnorm(64, 71, sqrt(20.25), lower.tail = FALSE
-  [4,-1.60281312 +[1] 0.9400931 
-  [5,-1.56834402 +>  
-  [6,] -1.53387492 +</code>
-  [7,] -1.49940582 +
-  [8,-1.46493672 +
-  [9,] -1.43046762 +
- [10,] -1.39599852 +
- [11,] -1.36152943 +
- [12,] -1.32706033 +
- [13,] -1.29259123 +
- [14,] -1.25812213 +
- [15,] -1.22365303 +
- [16,] -1.18918393 +
- [17,] -1.15471483 +
- [18,] -1.12024573 +
- [19,] -1.08577663 +
- [20,] -1.05130753 +
- [21,] -1.01683843 +
- [22,] -0.98236933 +
- [23,] -0.94790023 +
- [24,] -0.91343113 +
- [25,] -0.87896203 +
- [26,] -0.84449293 +
- [27,] -0.81002384 +
- [28,] -0.77555474 +
- [29,] -0.74108564 +
- [30,] -0.70661654 +
- [31,] -0.67214744 +
- [32,] -0.63767834 +
- [33,] -0.60320924 +
- [34,] -0.56874014 +
- [35,] -0.53427104 +
- [36,] -0.49980194 +
- [37,] -0.46533284 +
- [38,] -0.43086374 +
- [39,] -0.39639464 +
- [40,] -0.36192554 +
- [41,] -0.32745644 +
- [42,] -0.29298734 +
- [43,] -0.25851825 +
- [44,] -0.22404915 +
- [45,] -0.18958005 +
- [46,] -0.15511095 +
- [47,] -0.12064185 +
- [48,] -0.08617275 +
- [49,] -0.05170365 +
- [50,] -0.01723455 +
- [51, 0.01723455 +
- [52, 0.05170365 +
- [53, 0.08617275 +
- [54, 0.12064185 +
- [55, 0.15511095 +
- [56, 0.18958005 +
- [57, 0.22404915 +
- [58, 0.25851825 +
- [59, 0.29298734 +
- [60, 0.32745644 +
- [61, 0.36192554 +
- [62, 0.39639464 +
- [63, 0.43086374 +
- [64,]  0.46533284 +
- [65, 0.49980194 +
- [66, 0.53427104 +
- [67, 0.56874014 +
- [68, 0.60320924 +
- [69, 0.63767834 +
- [70, 0.67214744 +
- [71,]  0.70661654 +
- [72, 0.74108564 +
- [73, 0.77555474 +
- [74, 0.81002384 +
- [75, 0.84449293 +
- [76, 0.87896203 +
- [77, 0.91343113 +
- [78, 0.94790023 +
- [79, 0.98236933 +
- [80, 1.01683843 +
- [81, 1.05130753 +
- [82, 1.08577663 +
- [83, 1.12024573 +
- [84, 1.15471483 +
- [85, 1.18918393 +
- [86, 1.22365303 +
- [87, 1.25812213 +
- [88, 1.29259123 +
- [89, 1.32706033 +
- [90, 1.36152943 +
- [91, 1.39599852 +
- [92, 1.43046762 +
- [93, 1.46493672 +
- [94, 1.49940582 +
- [95, 1.53387492 +
- [96, 1.56834402 +
- [97, 1.60281312 +
- [98, 1.63728222 +
- [99, 1.67175132 +
-[100, 1.70622042 +
-attr(,"scaled:center") +
-[1] 50.5 +
-attr(,"scaled:scale"+
-[1] 29.01149 +
-> aa <- scale(a) +
-> mean(aa+
-[1] 0 +
-sd(aa) +
-[1] 1 +
-</code>+
  
 ==== exercise ==== ==== exercise ====
Line 886: Line 787:
 </code> </code>
  
 +위는 아래와 같음을 이해해야 한다
 +<code>
 +> sum(dbinom(c(0:5),12,1/2))
 +[1] 0.387207
 +
 +</code>
 </WRAP> </WRAP>
  
Line 926: Line 833:
  
 # the below is the same as the above # the below is the same as the above
-n <- 12 +n <- 12 
-p <- 1/2 +p <- 1/2 
-q <- 1-p +q <- 1-p 
-pnorm(5.5, n*p, sqrt(n*p*q)) +pnorm(5.5, n*p, sqrt(n*p*q)) 
 +[1] 0.386415 
 +
 </code> </code>
  
b/head_first_statistics/using_the_normal_distribution.1698794613.txt.gz · Last modified: 2023/11/01 08:23 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki