b:head_first_statistics:using_discrete_probability_distributions
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:using_discrete_probability_distributions [2023/10/01 13:07] – [Theorems] hkimscil | b:head_first_statistics:using_discrete_probability_distributions [2024/10/01 21:44] (current) – [Fat Dan changed his prices] hkimscil | ||
---|---|---|---|
Line 281: | Line 281: | ||
__Pool puzzle__ | __Pool puzzle__ | ||
+ | |||
+ | \begin{eqnarray*} | ||
+ | \text {original win} & = & \text {c(0, 5, 10, 15, 20)} \\ | ||
+ | \text {original cost} & = & \text {c(1)} \\ | ||
+ | \text {X} & = & \text {the amount of money you receive} \\ | ||
+ | \end{eqnarray*} | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
Line 295: | Line 301: | ||
E(X) = -.77 and E(Y) = -.85. What is 5 * E(X) + 3? | E(X) = -.77 and E(Y) = -.85. What is 5 * E(X) + 3? | ||
- | $ 5 * E(X) = -3.85 $ | + | \begin{eqnarray*} |
- | $ 5 * E(X) + 3 = -0.85 $ | + | E(X) & = & -.77 \\ |
- | $ E(Y) = 5 * E(X) + 3 $ | + | E(Y) & = & E(5X+3) \; |
+ | & = & E(5X) + 3 \\ | ||
+ | & = & 5 E(X) + 3 \\ | ||
+ | & = & -0.85 \\ | ||
+ | \\ | ||
+ | \\ | ||
+ | Var(Y) & = & Var(5X+3) \\ | ||
+ | & = & Var(5X) + Var(3) \\ | ||
+ | & = & Var(5X) \\ | ||
+ | & = & 5^2 Var(X) \\ | ||
+ | & = & 67.4275 | ||
+ | \end{eqnarray*} | ||
- | $ 5 * Var(X) = 13.4855 $ | ||
- | $ 5^2 * Var(X) = 67.4275 $ | ||
- | $ Var(Y) = 5^2 * Var(X) $ | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
Line 375: | Line 388: | ||
</ | </ | ||
- | 그런데 | + | 위는 각각 계산한 것. 아래는 Y = X - 0.5를 적용해서 계산한 것 |
\begin{eqnarray*} | \begin{eqnarray*} | ||
E(X-a) & = & E(X) - a \\ | E(X-a) & = & E(X) - a \\ | ||
Line 507: | Line 520: | ||
| $E(aX - bY)$ | $aE(X)-bE(Y)$ | | $E(aX - bY)$ | $aE(X)-bE(Y)$ | ||
| $E(X1 + X2 + X3)$ | $E(X) + E(X) + E(X) = 3E(X) \;\;\; $ ((X1, | | $E(X1 + X2 + X3)$ | $E(X) + E(X) + E(X) = 3E(X) \;\;\; $ ((X1, | ||
+ | | $Var(X)$ | $E(X-\mu)^{2} = E(X^{2})-E(X)^{2} \;\;\; $ see $\ref{var.theorem.1} $ | | ||
| $Var(c)$ | | $Var(c)$ | ||
| $Var(aX + b)$ | $a^{2}Var(X) \;\;\; $ see $\ref{var.theorem.2}$ and $\ref{var.theorem.3}$ | | | $Var(aX + b)$ | $a^{2}Var(X) \;\;\; $ see $\ref{var.theorem.2}$ and $\ref{var.theorem.3}$ | | ||
| $Var(aX - bY)$ | $a^{2}Var(X) + b^{2}Var(Y)$ see 1 | | | $Var(aX - bY)$ | $a^{2}Var(X) + b^{2}Var(Y)$ see 1 | | ||
- | | $Var(X)$ | $E(X-\mu)^{2} = E(X^{2})-\mu^{2} \;\;\; $ see $\ref{var.theorem.1} $ | | ||
| $Var(X1 + X2 + X3)$ | $Var(X) + Var(X) + Var(X) = 3 Var(X) \;\;\; $ ((X1, x2, x3는 동일한 특성을 (statistic, 가령 Xbar = 0, sd=1) 갖는 독립적인 세 집합이다. 따라서 세집합의 분산은 모두 1인 상태이고, | | $Var(X1 + X2 + X3)$ | $Var(X) + Var(X) + Var(X) = 3 Var(X) \;\;\; $ ((X1, x2, x3는 동일한 특성을 (statistic, 가령 Xbar = 0, sd=1) 갖는 독립적인 세 집합이다. 따라서 세집합의 분산은 모두 1인 상태이고, | ||
| $Var(X1 + X1 + X1)$ | $Var(3X) = 3^2 Var(X) = 9 Var(X) $ | | | $Var(X1 + X1 + X1)$ | $Var(3X) = 3^2 Var(X) = 9 Var(X) $ | | ||
Line 530: | Line 543: | ||
& = E[X^2] - 2 \mu^2 + \mu^2 | & = E[X^2] - 2 \mu^2 + \mu^2 | ||
& = E[X^2] - \mu^2 \nonumber \\ | & = E[X^2] - \mu^2 \nonumber \\ | ||
- | & = E[X^2] - (E[X])^2 \label{var.theorem.1} \tag{variance theorem 1} \\ | + | & = E[X^2] - E[X]^2 \label{var.theorem.1} \tag{variance theorem 1} \\ |
\end{align} | \end{align} | ||
Line 590: | Line 603: | ||
Variance는 기본적으로 아래와 같다. 이 때 $X=c$ 라고 (c=상수) 하면 | Variance는 기본적으로 아래와 같다. 이 때 $X=c$ 라고 (c=상수) 하면 | ||
\begin{align} | \begin{align} | ||
- | Var(X) | + | Var(X) & = E[(X − E(X))^2] \text{ |
- | & = E[(X − E(X))^2] \text{ | + | |
& = E[(c-c)^2] \nonumber | & = E[(c-c)^2] \nonumber | ||
& = 0 | & = 0 | ||
Line 617: | Line 629: | ||
\begin{align*} | \begin{align*} | ||
& E[(X + Y)^2] = E[X^2 + 2XY + Y^2] = E[X^2] + 2E[XY] + E[Y^2] \\ | & E[(X + Y)^2] = E[X^2 + 2XY + Y^2] = E[X^2] + 2E[XY] + E[Y^2] \\ | ||
- | - & [E(X + Y)]^2 = [E(X) + E(Y)]^2 = E(X)^2 + 2E(X)E(Y) + E(Y^2) \\ | + | - & [E(X + Y)]^2 = [E(X) + E(Y)]^2 = E(X)^2 + 2E(X)E(Y) + E(Y)^2 \\ |
\end{align*} | \end{align*} | ||
Line 625: | Line 637: | ||
Var[(X+Y)] = | Var[(X+Y)] = | ||
& E[X^2] & + & 2E[XY] & + & E[Y^2] \\ | & E[X^2] & + & 2E[XY] & + & E[Y^2] \\ | ||
- | - & E(X)^2 & - & 2E(X)E(Y) & - & E(Y^2) \\ | + | - & E(X)^2 & - & 2E(X)E(Y) & - & E(Y)^2 \\ |
& Var[X] & + & 2 E[XY]-2E(X)E(Y) & + & Var[Y] \\ | & Var[X] & + & 2 E[XY]-2E(X)E(Y) & + & Var[Y] \\ | ||
\end{align*} | \end{align*} | ||
Line 692: | Line 704: | ||
\end{align} | \end{align} | ||
====== e.gs in R ====== | ====== e.gs in R ====== | ||
- | |||
R에서 이를 살펴보면 | R에서 이를 살펴보면 | ||
< | < | ||
+ | # variance theorem 4-1, 4-2 | ||
+ | # http:// | ||
+ | # need a function, rnorm2 | ||
+ | rnorm2 <- function(n, | ||
+ | |||
m <- 0 | m <- 0 | ||
- | v <- 4 | + | v <- 1 |
n <- 10000 | n <- 10000 | ||
set.seed(1) | set.seed(1) | ||
Line 719: | Line 735: | ||
v.12 <- var(x1 + x2) | v.12 <- var(x1 + x2) | ||
v.12 | v.12 | ||
- | ## should be near 2*v | + | ###################################### |
+ | ## v.12 should be near var(x1)+var(x2) | ||
###################################### | ###################################### | ||
## 정확히 2*v가 아닌 이유는 x1, x2가 | ## 정확히 2*v가 아닌 이유는 x1, x2가 | ||
Line 744: | Line 761: | ||
# var(2*x1) = 2^2 var(X1) | # var(2*x1) = 2^2 var(X1) | ||
v.11 | v.11 | ||
- | |||
</ | </ |
b/head_first_statistics/using_discrete_probability_distributions.1696133249.txt.gz · Last modified: 2023/10/01 13:07 by hkimscil