User Tools

Site Tools


b:head_first_statistics:permutation_and_combination

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:permutation_and_combination [2024/09/30 00:28] – [Arranging by individuals is different than arranging by type] hkimscilb:head_first_statistics:permutation_and_combination [2025/10/01 08:36] (current) – [exercises] hkimscil
Line 3: Line 3:
 ====== Permutation ====== ====== Permutation ======
  
-세마리 말이 들어오는 순서+세마리 말이 들어오는 순서의 경우의 수
 {{:b:head_first_statistics:pasted:20191015-073815.png}} {{:b:head_first_statistics:pasted:20191015-073815.png}}
 ===== So what if there are n horses? ===== ===== So what if there are n horses? =====
Line 136: Line 136:
 20 horses 20 horses
 {{:b:head_first_statistics:pasted:20191015-082956.png}} {{:b:head_first_statistics:pasted:20191015-082956.png}}
 +
  
 <code> <code>
Line 155: Line 156:
  
 {{:b:head_first_statistics:pasted:20191015-083059.png}} {{:b:head_first_statistics:pasted:20191015-083059.png}}
 +$ {}{}_{n}\mathrm{P}_{r} $ 
  
 ===== What if horse order doesn’t matter ===== ===== What if horse order doesn’t matter =====
Line 200: Line 202:
 {{:b:head_first_statistics:pasted:20191015-084051.png}} {{:b:head_first_statistics:pasted:20191015-084051.png}}
  
-$\displaystyle {^{n} P_{r}$ +\begin{eqnarray*
-$\displaystyle ^{n} P_{r} = \displaystyle \frac {n!} {(n-r)!}$ +\displaystyle ^{n} P_{r} = \displaystyle \dfrac {n!} {(n-r)!} \\ 
-A permutation is the number of ways in which you can choose objects from a pool, and where the order in which you choose them counts. It’s a lot more specific than a combination as you want to count the number of ways in which you fill each position.+\end{eqnarray*}
  
 +A **permutation** is the number of ways in which you can choose objects from a pool, and **where the order in which you choose them counts**. It’s a lot more specific than a combination as you want to count the number of ways in which you fill each position.
  
-$\displaystyle ^{n} C_{r}+\begin{eqnarray*} 
-$\displaystyle ^{n} C_{r} = \displaystyle \frac {n!} {r! \cdot (n-r)!}$ +\displaystyle ^{n} C_{r} & = & \displaystyle \dfrac {^{n} P_{r}} {r!} \\ 
-A combination is the number of ways in which you can choose objects from a pool, without caring about the exact order in which you choose them. It’s a lot more general than a permutation as you don’t need to know how each position has been filled. It’s enough to know which objects have been chosen.+\displaystyle \frac {n!} {r! \cdot (n-r)!} \\ 
 +\end{eqnarray*} 
 +**combination** is the number of ways in which you can choose objects from a pool, **without caring about the exact order in which you choose them**. It’s a lot more general than a permutation as you don’t need to know how each position has been filled. It’s enough to know which objects have been chosen.
  
 ===== e.g. ===== ===== e.g. =====
Line 218: Line 223:
 </WRAP> </WRAP>
  
 +<WRAP box>
 +$ {}_{52} P _{5} $
 +<code>
 +# only combination function is available in r, choose
 +# for permutation
 +> choose(52,5)
 +[1] 2598960
 +> permute <- function(n,r) { 
 +>   choose(n,r) * factorial(r) 
 +> }
 +> permute(52, 5)
 +> [1] 311875200
 +> # or 
 +> factorial(52)/factorial(52-5)
 +[1] 311875200
 +
 +</code>
 +</WRAP>
 +답. 12명 중에서 순서는 상관없는 5명이므로 
 +${}_{12} C _{5} $
 <code> <code>
 ## n! / r!(n-r)! ## n! / r!(n-r)!
Line 229: Line 254:
  
 b b
-b/a 
 </code> </code>
 <code> <code>
Line 242: Line 266:
 > b > b
 [1] 36 [1] 36
-> b/a 
-[1] 0.04545455 
  
 </code> </code>
Line 262: Line 284:
 ## 52장의 카드 중에서 5장 고를 조합은 ## 52장의 카드 중에서 5장 고를 조합은
 factorial(52)/(factorial(5)*factorial(52-5)) factorial(52)/(factorial(5)*factorial(52-5))
-all <- factorial(52)/(factorial(5)*factorial(52-5))+all2 <- factorial(52)/(factorial(5)*factorial(52-5)) 
 +all2 
 +# or  
 +all <- choose(52, 5) 
 +all
 ## royal flush = 10, 11, 12, 13, 1 각 문양 ## royal flush = 10, 11, 12, 13, 1 각 문양
 ## 즉, 4가지. 따라서 전체 조합 중 4가지만 해당됨 ## 즉, 4가지. 따라서 전체 조합 중 4가지만 해당됨
Line 313: Line 339:
 </code> </code>
  
 +===== exercises =====
 +말 3마리, 얼룩말 4마리, 그리고 낙타 6마리 중에서 낙타 4마리와 얼룩말 3마리를 뽑아서 일렬로 앉히는 경우의 수를 구하시오. 
 +<code>
 +> # 6C4 * 4C3 * 7!
 +> choose(6,4) * choose(4,3) * factorial(4+3)
 +[1] 311875200
 +
 +</code>
  
 +tennessee 를 서로 다른 방법으로 배치할 수 있는 경우의 수는?
 +<code>
 +> # t
 +> # eeee
 +> # nn
 +> # ss
 +> # 9 letters
 +> # 9!/4!*2!*2!
 +> factorial(9)/(factorial(4)*factorial(2)*factorial(2))
 +[1] 3780
 +
 +</code>
 +
 +AGAIN이라는 단어가 있다. 이 단어를 알파벳 순으로 조합하여 나열한다면 49번째 오는 단어는 어떤 것일까?
 +
 +처음 A 로 시작하게 되는 단어는 G A I N 의 단어를 조합하여 나오는 수 4! = 24 단어
 +다음에는 G 로 시작하는 단어 A A I N 의 단어의 조합은 4!/2! = 12 단어
 +I 로 시작하는 단어는 A G A N 의 조합은 4!/2! = 12 단어
 +그렇다면 N으로 시작하는 첫단어가 답
 +N A A G I 
 +
 +S M I L E 이라는 단어의 문자에서 3 개를 뽑아서 나열하는 경우의 수는?
 +
 +$ _{5}P_{3} = \dfrac {5!}{2!} = 60 $
 +
 +AJOU UNIVERSITY 단어에서 AJOU 네 단어가 서로 이웃해서 모든 단어가 나열되는 경우의 수는?
 +X U N I V E R S I  T  Y
 +1 2 3 4 5 6 7 8 9 10 11
 +11 글자의 조합은 11! / 2!
 +A J O U 의 조합도 신경을 써야 하므로 4! 을 곱해준다.
 +
 +POWERFUL 라는 단어의 글자들을 나열하려고 한다. 모음이 앞이나 뒤에 적어도 한번은 들어가도록 나열하는 경우의 수는? W는 자음
 +이다.
 +모 . . . . 모
 +모 . . . . 자
 +자 . . . . 모
 +자 . . . . 자
 +의 경우라고 생각해야 할 듯 
 +모음은 O E U 
 +자음은 P W R F L 
 +전체 글자는 8 글자   8!
 +양쪽에 자음이 오는 경우는 5P2 = 20
 +
 +
 +\begin{eqnarray*}
 +{n \choose x} \\
 +\binom{n}{r} \\
 +_{n}C_{r} \\
 +^{n}P_{r} \\
 +_{n}P_{r} \\
 +
 +\end{eqnarray*}
b/head_first_statistics/permutation_and_combination.1727623732.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki