b:head_first_statistics:geometric_binomial_and_poisson_distributions

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/06 23:43] – [e.g.,] hkimscilb:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/13 08:59] (current) – [Binomial Distributions] hkimscil
Line 73: Line 73:
 ## rather than p * q^(r-1) ## rather than p * q^(r-1)
 dgeom(x = 0:n, prob = p) dgeom(x = 0:n, prob = p)
-hist(dgeom(x = 0:n, prob = p))+hist(dgeom(x = 0:n, prob = p)) 
 +barplot(dgeom(x=0:n, p))
 </code> </code>
  
Line 87: Line 88:
 [29] 0.0003868563 0.0003094850  [29] 0.0003868563 0.0003094850 
  
-> hist(dgeom(x = 0:n, prob = p))+hist(dgeom(x = 0:n, prob = p)) 
 +> barplot(dgeom(x=0:n, p))
 </code> </code>
  
-{{:b:head_first_statistics:pasted:20191030-023820.png}} +<code> {{:b:head_first_statistics:pasted:20191030-023820.png}} </code> 
 +{{:b:head_first_statistics:pasted:20251013-080224.png}}
 r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률
 $$ P(X > r) = q^{r} $$ $$ P(X > r) = q^{r} $$
Line 737: Line 739:
 $Var(X) = \displaystyle \frac{q}{p^{2}}$ $Var(X) = \displaystyle \frac{q}{p^{2}}$
  
 +<code> 
 +> p <- .4 
 +> q <- 1-p 
 +>  
 +> p*q^(2-1) 
 +[1] 0.24 
 +> dgeom(1, p) 
 +[1] 0.24 
 +
 +> 1-q^4 
 +[1] 0.8704 
 +> dgeom(0:3, p) 
 +[1] 0.4000 0.2400 0.1440 0.0864 
 +> sum(dgeom(0:3, p)) 
 +[1] 0.8704 
 +> pgeom(3, p) 
 +[1] 0.8704 
 +
 +> q^4 
 +[1] 0.1296 
 +> 1-sum(dgeom(0:3, p)) 
 +[1] 0.1296 
 +> 1-pgeom(3, p) 
 +[1] 0.1296 
 +> pgeom(3, p, lower.tail = F) 
 +[1] 0.1296 
 +>  
 +> 1/p 
 +[1] 2.5 
 +
 +> q/p^2 
 +[1] 3.75 
 +>  
 +</code>
  
  
Line 787: Line 822:
 \begin{eqnarray*}  \begin{eqnarray*} 
 P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where,} \\ P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where,} \\
-_{n}C_{r} & = & \frac {n!}{r!(n-r)!}+\displaystyle _{n}C_{r} & = & \displaystyle \dfrac {n!}{r!(n-r)!} \\ 
 +\text{c.f.,  } \\ 
 +\displaystyle _{n} P_{r} & = & \displaystyle \dfrac {n!} {(n-r)!} \\
 \end{eqnarray*}  \end{eqnarray*} 
 +
 +see [[:b:head_first_statistics:permutation_and_combination#what_if_horse_order_doesn_t_matter|Permutation chapter]]
 +
  
 p = 각 시행에서 성공할 확률 p = 각 시행에서 성공할 확률
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1759761812.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki