b:head_first_statistics:geometric_binomial_and_poisson_distributions
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/06 23:43] – [e.g.,] hkimscil | b:head_first_statistics:geometric_binomial_and_poisson_distributions [2025/10/13 08:59] (current) – [Binomial Distributions] hkimscil | ||
---|---|---|---|
Line 73: | Line 73: | ||
## rather than p * q^(r-1) | ## rather than p * q^(r-1) | ||
dgeom(x = 0:n, prob = p) | dgeom(x = 0:n, prob = p) | ||
- | hist(dgeom(x = 0:n, prob = p)) | + | # hist(dgeom(x = 0:n, prob = p)) |
+ | barplot(dgeom(x=0: | ||
</ | </ | ||
Line 87: | Line 88: | ||
[29] 0.0003868563 0.0003094850 | [29] 0.0003868563 0.0003094850 | ||
> | > | ||
- | > hist(dgeom(x = 0:n, prob = p)) | + | > # hist(dgeom(x = 0:n, prob = p)) |
+ | > barplot(dgeom(x=0: | ||
</ | </ | ||
- | {{: | + | < |
+ | {{: | ||
r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | r번 시도한 이후, 그 이후 어디서든지 간에 성공을 얻을 확률 | ||
$$ P(X > r) = q^{r} $$ | $$ P(X > r) = q^{r} $$ | ||
Line 737: | Line 739: | ||
$Var(X) = \displaystyle \frac{q}{p^{2}}$ | $Var(X) = \displaystyle \frac{q}{p^{2}}$ | ||
+ | < | ||
+ | > p <- .4 | ||
+ | > q <- 1-p | ||
+ | > | ||
+ | > p*q^(2-1) | ||
+ | [1] 0.24 | ||
+ | > dgeom(1, p) | ||
+ | [1] 0.24 | ||
+ | > | ||
+ | > 1-q^4 | ||
+ | [1] 0.8704 | ||
+ | > dgeom(0:3, p) | ||
+ | [1] 0.4000 0.2400 0.1440 0.0864 | ||
+ | > sum(dgeom(0: | ||
+ | [1] 0.8704 | ||
+ | > pgeom(3, p) | ||
+ | [1] 0.8704 | ||
+ | > | ||
+ | > q^4 | ||
+ | [1] 0.1296 | ||
+ | > 1-sum(dgeom(0: | ||
+ | [1] 0.1296 | ||
+ | > 1-pgeom(3, p) | ||
+ | [1] 0.1296 | ||
+ | > pgeom(3, p, lower.tail = F) | ||
+ | [1] 0.1296 | ||
+ | > | ||
+ | > 1/p | ||
+ | [1] 2.5 | ||
+ | > | ||
+ | > q/p^2 | ||
+ | [1] 3.75 | ||
+ | > | ||
+ | </ | ||
Line 787: | Line 822: | ||
\begin{eqnarray*} | \begin{eqnarray*} | ||
P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | P(X = r) & = & _{n}C_{r} \cdot p^{r} \cdot q^{n-r} \;\;\; \text{Where, | ||
- | _{n}C_{r} & = & \frac {n!}{r!(n-r)!} | + | \displaystyle |
+ | \text{c.f., | ||
+ | \displaystyle _{n} P_{r} & = & \displaystyle \dfrac {n!} {(n-r)!} \\ | ||
\end{eqnarray*} | \end{eqnarray*} | ||
+ | |||
+ | see [[: | ||
+ | |||
p = 각 시행에서 성공할 확률 | p = 각 시행에서 성공할 확률 |
b/head_first_statistics/geometric_binomial_and_poisson_distributions.1759761812.txt.gz · Last modified: by hkimscil