b:head_first_statistics:estimating_populations_and_samples
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:estimating_populations_and_samples [2024/11/11 08:12] – [Recap] hkimscil | b:head_first_statistics:estimating_populations_and_samples [2024/11/11 08:23] (current) – [Recap] hkimscil | ||
---|---|---|---|
Line 623: | Line 623: | ||
</ | </ | ||
====== Recap ====== | ====== Recap ====== | ||
- | Distribution of **Sample** <fc # | + | Distribution of **Sample** <fc # |
- | Hence, | + | when sampling n entities (repeatedly) from a population whose proportion is p. |
\begin{eqnarray*} | \begin{eqnarray*} | ||
Ps & \sim & N(p, \frac{pq}{n}) \\ | Ps & \sim & N(p, \frac{pq}{n}) \\ | ||
+ | \text{hence, | ||
+ | \text{standard deviation of} \\ | ||
+ | \text{sample proportions} & = & \sqrt{\frac{pq}{n}} | ||
\end{eqnarray*} | \end{eqnarray*} | ||
Distribution of **Sample** <fc # | Distribution of **Sample** <fc # | ||
+ | when sampling a sample whose size is n from a population whose mean is $\mu$ and variance is $\sigma^2$. | ||
+ | \begin{eqnarray*} | ||
+ | \overline{X} & \sim & N(\mu, | ||
+ | \text{hence, | ||
+ | \text{standard deviation of} \\ | ||
+ | \text{sample means} & = & \sqrt{\frac{\sigma^2}{n}} \\ | ||
+ | & = & \frac{\sigma}{\sqrt{n}} | ||
+ | \end{eqnarray*} |
b/head_first_statistics/estimating_populations_and_samples.1731280338.txt.gz · Last modified: 2024/11/11 08:12 by hkimscil