User Tools

Site Tools


b:head_first_statistics:estimating_populations_and_samples

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:estimating_populations_and_samples [2024/11/11 08:11] – [Recap] hkimscilb:head_first_statistics:estimating_populations_and_samples [2024/11/11 08:23] (current) – [Recap] hkimscil
Line 623: Line 623:
 </code> </code>
 ====== Recap ====== ====== Recap ======
-Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>  +Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>, 
-Hence+when sampling n entities (repeatedly) from a population whose proportion is p.
 \begin{eqnarray*} \begin{eqnarray*}
-Ps & \sim & N(np, pq) \\+Ps & \sim & N(p \frac{pq}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample proportions} & = & \sqrt{\frac{pq}{n}}
 \end{eqnarray*} \end{eqnarray*}
 Distribution of **Sample** <fc #ff0000>Means, $\overline{X}$</fc>  Distribution of **Sample** <fc #ff0000>Means, $\overline{X}$</fc> 
 +when sampling a sample whose size is n from a population whose mean is $\mu$ and variance is $\sigma^2$. 
 +\begin{eqnarray*} 
 +\overline{X} & \sim & N(\mu,  \frac{\sigma^2}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample means} & = &  \sqrt{\frac{\sigma^2}{n}} \\ 
 +& = &  \frac{\sigma}{\sqrt{n}} 
 +\end{eqnarray*}
b/head_first_statistics/estimating_populations_and_samples.1731280281.txt.gz · Last modified: 2024/11/11 08:11 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki