User Tools

Site Tools


b:head_first_statistics:estimating_populations_and_samples

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
b:head_first_statistics:estimating_populations_and_samples [2024/11/06 08:35] – [What about variance] hkimscilb:head_first_statistics:estimating_populations_and_samples [2024/11/11 08:23] (current) – [Recap] hkimscil
Line 393: Line 393:
  
 <code> <code>
-> sd.value  +# 위의 histogram 에서 mean 값은 이론적으로 
-[1] 0.04330127 +
-se <- sd.value +# standard deviation값은  
-se2 <- se*2 +se 
-> se2 + 
-[1] 0.08660254 +# 우리는 평균값에서 +2*sd.cal 구간이 95%인줄 안다.  
-p-se2 +se2 <- se * 2 
-[1] 0.1633975 +# 즉, 아래 구간이  
-p+se2 +lower <- p-se2 
-[1] 0.3366025 +upper <- p+se2 
-+lower 
 +upper 
 + 
 +hist(ps.k) 
 +abline(v=lower, col=2, lwd=2) 
 +abline(v=upper, col=2, lwd=2) 
 </code> </code>
 +즉 아래의 그래프에서 
 +{{:b:head_first_statistics:pasted:20241106-084520.png}}
 +lower: 0.1633975와 (16.33975%) upper: 0.3366025 사이에서 (33.66025%) red gumaball의 비율이 나올 확률이 95%라는 이야기. 
 +
 +그렇다면 만약에 30% 이상이 red gumball일 확률은 무엇이라는 질문이라면 
 +우리는 X ~ B(100, 1/4)에서 도출되는 
 +X ~ N(p, se) 에서 P(X>_0.3)을 구하는 질문이므로 
 +1-pnorm(0.295, p, se) 가 답이 되겠다. 
 +1-pnorm(0.295, p, se) 
 +[1] 0.1493488
 +
 ===== Exercise ===== ===== Exercise =====
 <WRAP info 60%> <WRAP info 60%>
Line 605: Line 622:
  
 </code> </code>
 +====== Recap ====== 
 +Distribution of **Sample** <fc #ff0000>**P**</fc>roportion<fc #ff0000>**s**</fc>, <fc #ff0000>$Ps$</fc>, 
 +when sampling n entities (repeatedly) from a population whose proportion is p. 
 +\begin{eqnarray*} 
 +Ps & \sim & N(p,  \frac{pq}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample proportions} & = & \sqrt{\frac{pq}{n}} 
 +\end{eqnarray*} 
 +Distribution of **Sample** <fc #ff0000>Means, $\overline{X}$</fc>  
 +when sampling a sample whose size is n from a population whose mean is $\mu$ and variance is $\sigma^2$. 
 +\begin{eqnarray*} 
 +\overline{X} & \sim & N(\mu,  \frac{\sigma^2}{n}) \\ 
 +\text{hence, } \\ 
 +\text{standard deviation of} \\  
 +\text{sample means} & = &  \sqrt{\frac{\sigma^2}{n}} \\ 
 +& = &  \frac{\sigma}{\sqrt{n}} 
 +\end{eqnarray*}
b/head_first_statistics/estimating_populations_and_samples.1730849719.txt.gz · Last modified: 2024/11/06 08:35 by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki