b:head_first_statistics:estimating_populations_and_samples
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| b:head_first_statistics:estimating_populations_and_samples [2024/11/05 13:01] – [Sampling distribution of sample mean] hkimscil | b:head_first_statistics:estimating_populations_and_samples [2025/10/08 12:20] (current) – [Sampling distribution of sample mean] hkimscil | ||
|---|---|---|---|
| Line 11: | Line 11: | ||
| - | < | + | < |
| $\hat\mu$ : See this hat I’m wearing? It means I’m a point estimator. If you don’t have the exact value of the mean, then I'm the next best thing. | $\hat\mu$ : See this hat I’m wearing? It means I’m a point estimator. If you don’t have the exact value of the mean, then I'm the next best thing. | ||
| Line 88: | Line 88: | ||
| p = 32/40 = 0.8 | p = 32/40 = 0.8 | ||
| - | < | + | < |
| Mighty Gumball takes another sample of their super-long-lasting gumballs, and finds that in the sample, 10 out of 40 people prefer the pink gumballs to all other colors. What proportion of people prefer pink gumballs in the population? What’s the probability of choosing someone from the population who doesn’t prefer pink gumballs? | Mighty Gumball takes another sample of their super-long-lasting gumballs, and finds that in the sample, 10 out of 40 people prefer the pink gumballs to all other colors. What proportion of people prefer pink gumballs in the population? What’s the probability of choosing someone from the population who doesn’t prefer pink gumballs? | ||
| </ | </ | ||
| Line 119: | Line 119: | ||
| population: gumball의 25%가 red라고 할 때, | population: gumball의 25%가 red라고 할 때, | ||
| 하나의 샘플을 뽑는다고 가정할 때의 기대값과 분산값은 무엇인가? | 하나의 샘플을 뽑는다고 가정할 때의 기대값과 분산값은 무엇인가? | ||
| + | <WRAP box> | ||
| Bernoulli distribution에 따르면, | Bernoulli distribution에 따르면, | ||
| 하나의 검볼을 뽑을 때, 이것이 red인지 아닌지에 대한 기대값과 분산값은 | 하나의 검볼을 뽑을 때, 이것이 red인지 아닌지에 대한 기대값과 분산값은 | ||
| Line 130: | Line 130: | ||
| 위의 상황에서 100번 independent trial을 통해서 구한 평균과 분산값은: | 위의 상황에서 100번 independent trial을 통해서 구한 평균과 분산값은: | ||
| - | $X \sim B(100, 1/4)$의 분포를 따른다고 할 때, | + | $X \sim B(100, 1/4)$의 분포를 따른다고 할 때, |
| + | </ | ||
| + | |||
| + | <WRAP box> | ||
| + | 혹은 위의 분포는 이항분포이므로 $X ~ B(n, p)$ 에서 $E(X) = np$; $V(X) = npq$ 이다. | ||
| + | </ | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| E(X) & = & n * p = 100 * 1/4 = 25 \\ | E(X) & = & n * p = 100 * 1/4 = 25 \\ | ||
| Line 136: | Line 142: | ||
| \end{eqnarray*} | \end{eqnarray*} | ||
| - | 이 때 $n = 100$일때 각각의 시도에서의 (trial) proportion 값은 ($\hat{P}$): | + | 위와 같이 $n = 100$ 일때 각각의 시도에서의 (trial) proportion 값은 ($\hat{P}$), 즉 |
| - | $X_{i} = $ Red color gumball | + | \begin{eqnarray*} |
| + | X_{i} & = & \text{the number of red gumball,} \\ | ||
| + | n & = & 100 | ||
| + | \end{eqnarray*} 조건에서의 proportion (비율) 값은 | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| - | n = 100, \\ | ||
| \hat{P_{1}} & = \frac{X_{1}}{n} = 0.34, (X_{1} = 34) \\ | \hat{P_{1}} & = \frac{X_{1}}{n} = 0.34, (X_{1} = 34) \\ | ||
| - | \hat{P_{2}} & = \frac{X_{2}}{n} = 0.43, (X_{2} = 43) \\ | + | \hat{P_{2}} & = \frac{X_{2}}{n} = 0.23, (X_{2} = 23) \\ |
| - | \hat{P_{3}} & = \frac{X_{3}}{n} = 0.32, (X_{3} = 32) \\ | + | \hat{P_{3}} & = \frac{X_{3}}{n} = 0.22, (X_{3} = 22) \\ |
| - | \hat{P_{4}} & = \frac{X_{4}}{n} = 0.42, (X_{4} = 42) \\ | + | \hat{P_{4}} & = \frac{X_{4}}{n} = 0.21, (X_{4} = 21) \\ |
| - | \cdots \cdots \cdots \\ | + | & \cdots \cdots |
| - | \hat{P_{k}} & = \frac{X_{k}}{n} = 0.24, (X_{1} = 24) \\ | + | \hat{P_{k}} & = \frac{X_{k}}{n} = 0.24, (X_{k} = 24) \\ |
| \end{eqnarray*} | \end{eqnarray*} | ||
| - | 즉, $X \sim B(n, p)$ 일 때, sample의 | + | 즉, $X \sim B(n, p)$ 일 때, sample의 |
| {{: | {{: | ||
| - | 위의 sampling을 계속한다면 | + | 위의 sampling을 계속한다면 |
| {{: | {{: | ||
| - | 이렇게 계속 샘플링을 하여 | + | 이렇게 계속 샘플링을 하여 |
| - | n = 100 개의 gumball을 sampling하여 얻는 Red gumball의 비율: | + | |
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| Line 165: | Line 172: | ||
| \end{eqnarray*} | \end{eqnarray*} | ||
| - | 아래에서 | + | 아래는 위의 시뮬레이션이다. |
| + | * $X ~ B(100, 1/4)$의 이항분포에서 (n=100, p=1/4) | ||
| + | * random 하게 | ||
| + | * 얻는 Red gumball의 숫자 | ||
| < | < | ||
| > set.seed(101) | > set.seed(101) | ||
| - | > rbinom(100, 100, 1/4) | + | > k <- 1000 |
| - | [1] 24 18 27 27 22 23 26 23 26 25 30 27 28 32 24 26 29 22 24 18 27 33 22 27 31 29 | + | > n <- 100 |
| - | | + | > p <- 1/4 |
| - | | + | > q <- 1-p |
| - | [79] 27 33 27 28 28 34 15 32 23 24 20 16 27 31 27 21 22 29 24 22 19 18 | + | # in order to clarify what we are doing |
| + | # X~B(n,p) 일 때, 100개의 검볼을 샘플링해서 | ||
| + | # red gumball을 세봤더니 | ||
| + | > rbinom(1, | ||
| + | [1] 24 | ||
| + | # 아래는 이것을 1000번 (k번) 한 것 | ||
| + | > numbers.of.red.gumball <- rbinom(k, n, p) | ||
| + | > numbers.of.red.gumball | ||
| + | | ||
| + | [27] 24 24 27 24 23 21 21 25 31 21 29 16 31 24 24 28 23 24 22 19 31 28 20 19 24 27 | ||
| + | [53] 28 24 28 27 25 27 26 29 29 26 36 29 27 16 23 30 32 22 32 26 29 29 22 18 22 27 | ||
| + | [79] 33 27 28 28 34 15 32 23 24 20 16 27 31 27 21 22 29 24 22 19 18 20 17 24 30 27 | ||
| + | [105] 23 19 17 28 37 20 18 26 30 30 34 30 25 23 26 24 20 19 25 22 29 25 25 27 19 27 | ||
| + | [131] 23 22 23 26 25 25 32 25 27 32 22 32 23 30 21 25 27 17 24 21 24 26 33 20 22 26 | ||
| + | [157] 28 25 30 33 27 30 26 23 39 23 31 18 26 27 34 25 28 31 35 28 29 32 27 31 28 25 | ||
| + | [183] 22 23 15 22 20 26 21 22 16 23 22 31 24 27 31 21 24 26 26 22 22 34 19 30 22 28 | ||
| + | [209] 25 24 29 25 25 16 27 23 25 32 18 22 25 25 24 24 21 32 20 28 29 22 23 22 25 21 | ||
| + | [235] 27 22 24 29 24 22 30 22 21 17 25 23 21 27 22 22 25 22 29 24 26 32 28 20 22 22 | ||
| + | [261] 27 26 22 24 31 18 27 29 28 17 27 33 23 33 25 32 26 23 19 21 20 23 15 19 23 26 | ||
| + | [287] 27 28 23 24 35 27 30 23 25 24 31 23 20 22 22 26 21 22 26 28 26 23 21 13 29 27 | ||
| + | [313] 21 34 28 24 19 26 27 25 23 27 25 19 29 18 28 21 27 28 28 22 22 20 20 25 27 17 | ||
| + | [339] 16 27 32 23 18 28 31 29 21 27 27 30 21 25 20 25 26 30 26 21 15 29 22 21 16 25 | ||
| + | [365] 25 27 26 27 28 21 27 24 25 24 39 24 28 33 20 26 24 27 20 31 27 27 20 21 31 25 | ||
| + | [391] 22 22 30 34 27 23 21 25 20 24 29 19 30 27 33 22 29 30 22 29 26 24 18 26 36 26 | ||
| + | [417] 23 24 22 32 33 16 24 28 24 25 29 31 28 28 29 26 24 25 28 27 24 31 25 31 33 26 | ||
| + | [443] 26 24 33 28 20 23 22 23 22 30 25 25 23 27 27 23 24 28 24 28 23 22 26 30 26 27 | ||
| + | | ||
| + | [495] 31 27 22 21 24 24 26 23 23 29 27 23 25 20 21 21 27 25 22 29 28 21 21 24 27 24 | ||
| + | [521] 28 19 14 32 27 22 24 35 26 28 28 26 25 25 19 26 24 20 19 28 25 25 24 21 30 27 | ||
| + | [547] 30 20 22 26 31 26 20 20 27 25 26 18 30 20 29 16 38 26 22 29 22 30 26 19 27 24 | ||
| + | [573] 29 29 25 19 23 24 24 23 25 31 18 24 33 27 25 27 29 28 24 23 24 28 20 24 30 24 | ||
| + | [599] 21 20 25 24 24 30 22 26 23 25 21 21 24 27 18 20 22 30 25 23 27 26 23 23 28 18 | ||
| + | [625] 29 27 25 32 26 15 22 24 21 34 23 23 18 29 23 27 28 23 37 20 17 25 11 21 28 22 | ||
| + | [651] 28 25 22 25 21 18 20 27 30 24 28 23 30 31 24 23 37 19 27 32 25 27 28 29 22 26 | ||
| + | [677] 26 20 22 25 24 19 27 21 32 27 31 29 24 24 29 29 25 22 34 23 18 33 18 23 24 26 | ||
| + | [703] 18 20 23 30 28 26 34 17 33 30 32 30 22 28 19 19 23 23 20 23 21 31 30 20 24 23 | ||
| + | [729] 23 28 26 34 27 33 31 20 25 12 25 20 20 25 27 24 29 26 22 30 26 28 28 27 23 18 | ||
| + | [755] 28 22 21 27 22 26 21 22 27 24 19 27 29 37 30 27 25 30 19 22 22 28 32 22 33 26 | ||
| + | [781] 20 31 23 24 24 26 24 30 17 21 20 22 20 17 24 22 24 23 23 24 23 16 16 17 23 27 | ||
| + | [807] 29 26 16 21 34 19 25 25 28 32 17 22 26 23 23 24 22 22 14 30 25 33 26 25 31 28 | ||
| + | [833] 30 21 19 17 19 21 16 21 26 21 29 27 31 32 19 22 24 25 25 24 23 30 21 22 19 20 | ||
| + | [859] 21 20 21 28 19 26 28 26 29 28 26 21 31 32 31 22 23 25 27 26 22 27 30 24 25 23 | ||
| + | [885] 27 25 24 24 30 29 26 32 29 23 24 20 26 26 22 22 19 23 33 18 27 26 28 18 26 24 | ||
| + | [911] 24 26 27 17 26 23 27 25 32 20 22 23 25 25 24 28 20 19 22 20 22 24 17 19 22 17 | ||
| + | [937] 19 27 27 28 29 18 24 30 26 34 26 24 25 24 29 28 29 23 24 21 24 23 23 29 19 29 | ||
| + | [963] 30 33 25 30 32 23 30 27 17 20 21 24 36 21 26 30 26 25 22 21 38 21 24 21 25 21 | ||
| + | [989] 32 20 29 24 19 21 32 26 27 18 21 20 | ||
| > | > | ||
| </ | </ | ||
| - | 이 샘플의 평균은? | + | 그런데 교재는 |
| < | < | ||
| - | > set.seed(101) | + | > # 아래처럼 n으로 |
| - | > mean(rbinom(100, | + | > # 나눠주면 비율을 구할 수 있다 |
| - | [1] 25.28 | + | > proportions.of.rg <- numbers.of.red.gumball/n |
| - | > | + | > ps.k <- proportions.of.rg |
| + | > ps.k | ||
| + | [1] 0.18 0.27 0.27 0.22 0.23 0.26 0.23 0.26 0.25 0.30 0.27 0.28 0.32 0.24 0.26 | ||
| + | [16] 0.29 0.22 0.24 0.18 0.27 0.33 0.22 0.27 0.31 0.29 0.19 0.24 0.24 0.27 0.24 | ||
| + | [31] 0.23 0.21 0.21 0.25 0.31 0.21 0.29 0.16 0.31 0.24 0.24 0.28 0.23 0.24 0.22 | ||
| + | [46] 0.19 0.31 0.28 0.20 0.19 0.24 0.27 0.28 0.24 0.28 0.27 0.25 0.27 0.26 0.29 | ||
| + | [61] 0.29 0.26 0.36 0.29 0.27 0.16 0.23 0.30 0.32 0.22 0.32 0.26 0.29 0.29 0.22 | ||
| + | [76] 0.18 0.22 0.27 0.33 0.27 0.28 0.28 0.34 0.15 0.32 0.23 0.24 0.20 0.16 0.27 | ||
| + | [91] 0.31 0.27 0.21 0.22 0.29 0.24 0.22 0.19 0.18 0.20 0.17 0.24 0.30 0.27 0.23 | ||
| + | [106] 0.19 0.17 0.28 0.37 0.20 0.18 0.26 0.30 0.30 0.34 0.30 0.25 0.23 0.26 0.24 | ||
| + | [121] 0.20 0.19 0.25 0.22 0.29 0.25 0.25 0.27 0.19 0.27 0.23 0.22 0.23 0.26 0.25 | ||
| + | [136] 0.25 0.32 0.25 0.27 0.32 0.22 0.32 0.23 0.30 0.21 0.25 0.27 0.17 0.24 0.21 | ||
| + | [151] 0.24 0.26 0.33 0.20 0.22 0.26 0.28 0.25 0.30 0.33 0.27 0.30 0.26 0.23 0.39 | ||
| + | [166] 0.23 0.31 0.18 0.26 0.27 0.34 0.25 0.28 0.31 0.35 0.28 0.29 0.32 0.27 0.31 | ||
| + | [181] 0.28 0.25 0.22 0.23 0.15 0.22 0.20 0.26 0.21 0.22 0.16 0.23 0.22 0.31 0.24 | ||
| + | [196] 0.27 0.31 0.21 0.24 0.26 0.26 0.22 0.22 0.34 0.19 0.30 0.22 0.28 0.25 0.24 | ||
| + | [211] 0.29 0.25 0.25 0.16 0.27 0.23 0.25 0.32 0.18 0.22 0.25 0.25 0.24 0.24 0.21 | ||
| + | [226] 0.32 0.20 0.28 0.29 0.22 0.23 0.22 0.25 0.21 0.27 0.22 0.24 0.29 0.24 0.22 | ||
| + | [241] 0.30 0.22 0.21 0.17 0.25 0.23 0.21 0.27 0.22 0.22 0.25 0.22 0.29 0.24 0.26 | ||
| + | [256] 0.32 0.28 0.20 0.22 0.22 0.27 0.26 0.22 0.24 0.31 0.18 0.27 0.29 0.28 0.17 | ||
| + | [271] 0.27 0.33 0.23 0.33 0.25 0.32 0.26 0.23 0.19 0.21 0.20 0.23 0.15 0.19 0.23 | ||
| + | [286] 0.26 0.27 0.28 0.23 0.24 0.35 0.27 0.30 0.23 0.25 0.24 0.31 0.23 0.20 0.22 | ||
| + | [301] 0.22 0.26 0.21 0.22 0.26 0.28 0.26 0.23 0.21 0.13 0.29 0.27 0.21 0.34 0.28 | ||
| + | [316] 0.24 0.19 0.26 0.27 0.25 0.23 0.27 0.25 0.19 0.29 0.18 0.28 0.21 0.27 0.28 | ||
| + | [331] 0.28 0.22 0.22 0.20 0.20 0.25 0.27 0.17 0.16 0.27 0.32 0.23 0.18 0.28 0.31 | ||
| + | [346] 0.29 0.21 0.27 0.27 0.30 0.21 0.25 0.20 0.25 0.26 0.30 0.26 0.21 0.15 0.29 | ||
| + | [361] 0.22 0.21 0.16 0.25 0.25 0.27 0.26 0.27 0.28 0.21 0.27 0.24 0.25 0.24 0.39 | ||
| + | [376] 0.24 0.28 0.33 0.20 0.26 0.24 0.27 0.20 0.31 0.27 0.27 0.20 0.21 0.31 0.25 | ||
| + | [391] 0.22 0.22 0.30 0.34 0.27 0.23 0.21 0.25 0.20 0.24 0.29 0.19 0.30 0.27 0.33 | ||
| + | [406] 0.22 0.29 0.30 0.22 0.29 0.26 0.24 0.18 0.26 0.36 0.26 0.23 0.24 0.22 0.32 | ||
| + | [421] 0.33 0.16 0.24 0.28 0.24 0.25 0.29 0.31 0.28 0.28 0.29 0.26 0.24 0.25 0.28 | ||
| + | [436] 0.27 0.24 0.31 0.25 0.31 0.33 0.26 0.26 0.24 0.33 0.28 0.20 0.23 0.22 0.23 | ||
| + | [451] 0.22 0.30 0.25 0.25 0.23 0.27 0.27 0.23 0.24 0.28 0.24 0.28 0.23 0.22 0.26 | ||
| + | [466] 0.30 0.26 0.27 0.21 0.23 0.23 0.27 0.26 0.23 0.25 0.30 0.25 0.24 0.22 0.28 | ||
| + | [481] 0.18 0.23 0.18 0.16 0.27 0.26 0.18 0.25 0.27 0.22 0.20 0.19 0.27 0.25 0.31 | ||
| + | [496] 0.27 0.22 0.21 0.24 0.24 0.26 0.23 0.23 0.29 0.27 0.23 0.25 0.20 0.21 0.21 | ||
| + | [511] 0.27 0.25 0.22 0.29 0.28 0.21 0.21 0.24 0.27 0.24 0.28 0.19 0.14 0.32 0.27 | ||
| + | [526] 0.22 0.24 0.35 0.26 0.28 0.28 0.26 0.25 0.25 0.19 0.26 0.24 0.20 0.19 0.28 | ||
| + | [541] 0.25 0.25 0.24 0.21 0.30 0.27 0.30 0.20 0.22 0.26 0.31 0.26 0.20 0.20 0.27 | ||
| + | [556] 0.25 0.26 0.18 0.30 0.20 0.29 0.16 0.38 0.26 0.22 0.29 0.22 0.30 0.26 0.19 | ||
| + | [571] 0.27 0.24 0.29 0.29 0.25 0.19 0.23 0.24 0.24 0.23 0.25 0.31 0.18 0.24 0.33 | ||
| + | [586] 0.27 0.25 0.27 0.29 0.28 0.24 0.23 0.24 0.28 0.20 0.24 0.30 0.24 0.21 0.20 | ||
| + | [601] 0.25 0.24 0.24 0.30 0.22 0.26 0.23 0.25 0.21 0.21 0.24 0.27 0.18 0.20 0.22 | ||
| + | [616] 0.30 0.25 0.23 0.27 0.26 0.23 0.23 0.28 0.18 0.29 0.27 0.25 0.32 0.26 0.15 | ||
| + | [631] 0.22 0.24 0.21 0.34 0.23 0.23 0.18 0.29 0.23 0.27 0.28 0.23 0.37 0.20 0.17 | ||
| + | [646] 0.25 0.11 0.21 0.28 0.22 0.28 0.25 0.22 0.25 0.21 0.18 0.20 0.27 0.30 0.24 | ||
| + | [661] 0.28 0.23 0.30 0.31 0.24 0.23 0.37 0.19 0.27 0.32 0.25 0.27 0.28 0.29 0.22 | ||
| + | [676] 0.26 0.26 0.20 0.22 0.25 0.24 0.19 0.27 0.21 0.32 0.27 0.31 0.29 0.24 0.24 | ||
| + | [691] 0.29 0.29 0.25 0.22 0.34 0.23 0.18 0.33 0.18 0.23 0.24 0.26 0.18 0.20 0.23 | ||
| + | [706] 0.30 0.28 0.26 0.34 0.17 0.33 0.30 0.32 0.30 0.22 0.28 0.19 0.19 0.23 0.23 | ||
| + | [721] 0.20 0.23 0.21 0.31 0.30 0.20 0.24 0.23 0.23 0.28 0.26 0.34 0.27 0.33 0.31 | ||
| + | [736] 0.20 0.25 0.12 0.25 0.20 0.20 0.25 0.27 0.24 0.29 0.26 0.22 0.30 0.26 0.28 | ||
| + | [751] 0.28 0.27 0.23 0.18 0.28 0.22 0.21 0.27 0.22 0.26 0.21 0.22 0.27 0.24 0.19 | ||
| + | [766] 0.27 0.29 0.37 0.30 0.27 0.25 0.30 0.19 0.22 0.22 0.28 0.32 0.22 0.33 0.26 | ||
| + | [781] 0.20 0.31 0.23 0.24 0.24 0.26 0.24 0.30 0.17 0.21 0.20 0.22 0.20 0.17 0.24 | ||
| + | [796] 0.22 0.24 0.23 0.23 0.24 0.23 0.16 0.16 0.17 0.23 0.27 0.29 0.26 0.16 0.21 | ||
| + | [811] 0.34 0.19 0.25 0.25 0.28 0.32 0.17 0.22 0.26 0.23 0.23 0.24 0.22 0.22 0.14 | ||
| + | [826] 0.30 0.25 0.33 0.26 0.25 0.31 0.28 0.30 0.21 0.19 0.17 0.19 0.21 0.16 0.21 | ||
| + | [841] 0.26 0.21 0.29 0.27 0.31 0.32 0.19 0.22 0.24 0.25 0.25 0.24 0.23 0.30 0.21 | ||
| + | [856] 0.22 0.19 0.20 0.21 0.20 0.21 0.28 0.19 0.26 0.28 0.26 0.29 0.28 0.26 0.21 | ||
| + | [871] 0.31 0.32 0.31 0.22 0.23 0.25 0.27 0.26 0.22 0.27 0.30 0.24 0.25 0.23 0.27 | ||
| + | [886] 0.25 0.24 0.24 0.30 0.29 0.26 0.32 0.29 0.23 0.24 0.20 0.26 0.26 0.22 0.22 | ||
| + | [901] 0.19 0.23 0.33 0.18 0.27 0.26 0.28 0.18 0.26 0.24 0.24 0.26 0.27 0.17 0.26 | ||
| + | [916] 0.23 0.27 0.25 0.32 0.20 0.22 0.23 0.25 0.25 0.24 0.28 0.20 0.19 0.22 0.20 | ||
| + | [931] 0.22 0.24 0.17 0.19 0.22 0.17 0.19 0.27 0.27 0.28 0.29 0.18 0.24 0.30 0.26 | ||
| + | [946] 0.34 0.26 0.24 0.25 0.24 0.29 0.28 0.29 0.23 0.24 0.21 0.24 0.23 0.23 0.29 | ||
| + | [961] 0.19 0.29 0.30 0.33 0.25 0.30 0.32 0.23 0.30 0.27 0.17 0.20 0.21 0.24 0.36 | ||
| + | [976] 0.21 0.26 0.30 0.26 0.25 0.22 0.21 0.38 0.21 0.24 0.21 0.25 0.21 0.32 0.20 | ||
| + | [991] 0.29 0.24 0.19 0.21 0.32 0.26 0.27 0.18 0.21 0.20 | ||
| + | > | ||
| </ | </ | ||
| - | 그런데 | + | 위의 |
| < | < | ||
| - | > set.seed(101) | + | > mean.ps.k <- mean(ps.k) |
| - | > mean(rbinom(100000000, | + | > mean.ps.k |
| - | [1] 25.0001 | + | [1] 0.24893 |
| > | > | ||
| </ | </ | ||
| - | 위의 | + | 위의 |
| < | < | ||
| - | set.seed(101) | + | hist(ps.k) |
| - | k <- 10000 | + | </ |
| - | n <- 100 | + | 이는 평균이 0.25에 (p값에) 근접하는 값이 된다. 교재의 p값이 되는 것은 k가 무한대로 큰 값을 가질 때의 이야기. |
| - | p <- 1/4 | + | 아래는 k를 1000번이 아닌 1000000번 (백만번일 때의 이야기). 평균비율이 0.25가 된다. |
| - | q <- 1-p | + | < |
| - | numbers.of.red.gumball <- rbinom(k, n, p) | + | > set.seed(101) |
| - | head(numbers.of.red.gumball) | + | > k <- 1000000 |
| - | proportions.of.rg <- numbers.of.red.gumball/ | + | > n <- 100 |
| - | head(proportions.of.rg) | + | > p <- 1/4 |
| - | mean(proportions.of.rg) | + | > q <- 1-p |
| - | hist(proportions.of.rg) | + | > numbers.of.red.gumball <- rbinom(k, n, p) |
| + | > # 아래처럼 n으로 | ||
| + | > # 나눠주면 비율을 구할 수 있다 | ||
| + | > proportions.of.rg <- numbers.of.red.gumball/ | ||
| + | > ps.k <- proportions.of.rg | ||
| + | > mean.ps.k <- mean(ps.k) | ||
| + | > mean.ps.k | ||
| + | [1] 0.2500217 | ||
| + | > | ||
| </ | </ | ||
| - | {{: | + | {{: |
| ^ references | ^ references | ||
| Line 212: | Line 346: | ||
| ===== What about variance ===== | ===== What about variance ===== | ||
| + | 그렇다면 위의 분포에서의 분산값은 얼마가 될까? 그리고 표준편차값은 얼마가 될까? | ||
| \begin{eqnarray*} | \begin{eqnarray*} | ||
| - | Var(\text{probability | + | \text{Variance |
| & = & Var\left(\frac{X}{n}\right) \\ | & = & Var\left(\frac{X}{n}\right) \\ | ||
| & = & \frac {Var(X)}{n^{2}} \\ | & = & \frac {Var(X)}{n^{2}} \\ | ||
| & = & \frac {npq}{n^{2}} \\ | & = & \frac {npq}{n^{2}} \\ | ||
| - | & = & \frac {pq}{n} | + | & = & \frac {pq}{n} \\ |
| - | \end{eqnarray*} | + | |
| - | + | ||
| - | \begin{eqnarray*} | + | |
| \text{Standard deviation of sample proportions} & = & \sqrt{\frac{pq}{n}} \\ | \text{Standard deviation of sample proportions} & = & \sqrt{\frac{pq}{n}} \\ | ||
| & = & \text{Standard error of sample proportions} | & = & \text{Standard error of sample proportions} | ||
| \end{eqnarray*} | \end{eqnarray*} | ||
| + | 우리는 위의 Standard deviation of sample proportions를 특별하게 standard error라고 부른다. | ||
| - | 이를 | + | 종합하면, |
| $$E(P_{s}) = p \qquad\qquad\qquad Var(P_{s}) = \displaystyle \frac{pq}{n}$$ | $$E(P_{s}) = p \qquad\qquad\qquad Var(P_{s}) = \displaystyle \frac{pq}{n}$$ | ||
| Line 233: | Line 366: | ||
| continuity correction: $$\pm \frac{1}{2n}$$ | continuity correction: $$\pm \frac{1}{2n}$$ | ||
| + | |||
| + | R에서의 simulation을 계속해서 보면 | ||
| + | < | ||
| + | > # variance? | ||
| + | > var.cal <- var(ps.k) | ||
| + | > var.value <- (p*q)/n | ||
| + | > var.cal | ||
| + | [1] 0.001869001 | ||
| + | > var.value | ||
| + | [1] 0.001875 | ||
| + | > | ||
| + | > # standard deviation | ||
| + | > sd.cal <- sqrt(var.cal) | ||
| + | > sd.value <- sqrt(var.value) | ||
| + | > sd.cal | ||
| + | [1] 0.04323195 | ||
| + | > sd.value | ||
| + | [1] 0.04330127 | ||
| + | > se <- sd.value | ||
| + | > # 우리는 standard deviation of sample | ||
| + | > # proportions 를 standard error라고 | ||
| + | > # 부른다 | ||
| + | > | ||
| + | </ | ||
| + | 위의 se는 standard deviation의 일종이므로 그 특성을 갖는다 (68, 95, 99%). 따라서 Red gumball의 비율이 1/4임을 알고 있을 때, n=100개의 gumball을 샘플링하면 (한번), red gumball의 비율은 p를 (0.25) 중심으로 위아래도 2*se 범위의 값이 나올 확률이 95%임을 안다는 것이 된다. 위에서 계산해보면; | ||
| + | |||
| + | < | ||
| + | # 위의 histogram 에서 mean 값은 이론적으로 | ||
| + | p | ||
| + | # standard deviation값은 | ||
| + | se | ||
| + | |||
| + | # 우리는 평균값에서 +- 2*sd.cal 구간이 95%인줄 안다. | ||
| + | se2 <- se * 2 | ||
| + | # 즉, 아래 구간이 | ||
| + | lower <- p-se2 | ||
| + | upper <- p+se2 | ||
| + | lower | ||
| + | upper | ||
| + | |||
| + | hist(ps.k) | ||
| + | abline(v=lower, | ||
| + | abline(v=upper, | ||
| + | |||
| + | </ | ||
| + | 즉 아래의 그래프에서 | ||
| + | {{: | ||
| + | lower: 0.1633975와 (16.33975%) upper: 0.3366025 사이에서 (33.66025%) red gumaball의 비율이 나올 확률이 95%라는 이야기. | ||
| + | |||
| + | 그렇다면 만약에 30% 이상이 red gumball일 확률은 무엇이라는 질문이라면 | ||
| + | 우리는 X ~ B(100, 1/4)에서 도출되는 | ||
| + | X ~ N(p, se) 에서 P(X> | ||
| + | 1-pnorm(0.295, | ||
| + | 1-pnorm(0.295, | ||
| + | [1] 0.1493488 | ||
| ===== Exercise ===== | ===== Exercise ===== | ||
| - | < | + | < |
| 25% of the gumball population are red. What’s the probability that in a box of 100 gumballs, at least 40% will be red? We’ll guide you through the steps. | 25% of the gumball population are red. What’s the probability that in a box of 100 gumballs, at least 40% will be red? We’ll guide you through the steps. | ||
| Line 301: | Line 489: | ||
| ====== Sampling distribution of sample mean ====== | ====== Sampling distribution of sample mean ====== | ||
| - | < | + | < |
| According to Mighty Gumball’s statistics for the population, the mean number of gumballs in each packet is 10, and the variance is 1. The trouble is they’ve had a complaint. One of their most faithful customers bought 30 packets of gumballs, and he found that the average number of gumballs per packet in his sample is only 8.5. | According to Mighty Gumball’s statistics for the population, the mean number of gumballs in each packet is 10, and the variance is 1. The trouble is they’ve had a complaint. One of their most faithful customers bought 30 packets of gumballs, and he found that the average number of gumballs per packet in his sample is only 8.5. | ||
| </ | </ | ||
| Line 397: | Line 585: | ||
| ===== Exercise ===== | ===== Exercise ===== | ||
| - | < | + | < |
| Let’s apply this to Mighty Gumball’s problem. | Let’s apply this to Mighty Gumball’s problem. | ||
| Line 434: | Line 622: | ||
| </ | </ | ||
| + | ====== Recap ====== | ||
| + | Distribution of **Sample** <fc # | ||
| + | when sampling n entities (repeatedly) from a population whose proportion is p. | ||
| + | \begin{eqnarray*} | ||
| + | Ps & \sim & N(p, \frac{pq}{n}) \\ | ||
| + | \text{hence, | ||
| + | \text{standard deviation of} \\ | ||
| + | \text{sample proportions} & = & \sqrt{\frac{pq}{n}} | ||
| + | \end{eqnarray*} | ||
| + | Distribution of **Sample** <fc # | ||
| + | when sampling a sample whose size is n from a population whose mean is $\mu$ and variance is $\sigma^2$. | ||
| + | \begin{eqnarray*} | ||
| + | \overline{X} & \sim & N(\mu, | ||
| + | \text{hence, | ||
| + | \text{standard deviation of} \\ | ||
| + | \text{sample means} & = & \sqrt{\frac{\sigma^2}{n}} \\ | ||
| + | & = & \frac{\sigma}{\sqrt{n}} | ||
| + | \end{eqnarray*} | ||
b/head_first_statistics/estimating_populations_and_samples.1730779268.txt.gz · Last modified: by hkimscil
