b:head_first_statistics:calculating_probability
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
b:head_first_statistics:calculating_probability [2020/09/29 15:15] – [Bayes' Theorem] hkimscil | b:head_first_statistics:calculating_probability [2024/10/02 15:44] (current) – [Dependent and Independent event] hkimscil | ||
---|---|---|---|
Line 30: | Line 30: | ||
A = event A | A = event A | ||
- | [{{: | + | [{{: |
<WRAP clear /> | <WRAP clear /> | ||
- | [{{: | + | [{{: |
<WRAP clear /> | <WRAP clear /> | ||
Line 90: | Line 90: | ||
[{{: | [{{: | ||
<WRAP clear /> | <WRAP clear /> | ||
- | [{{: | + | [{{: |
* Intersection $ \cap $ | * Intersection $ \cap $ | ||
Line 137: | Line 137: | ||
- | [{{: | + | [{{: |
- | [{{: | + | [{{: |
Line 149: | Line 149: | ||
< | < | ||
- | [{{: | + | [{{: |
- | [{{: | + | [{{: |
<WRAP clear /> | <WRAP clear /> | ||
Line 160: | Line 160: | ||
* P(Coffee) | * P(Coffee) | ||
* P(Donuts | Coffee) | * P(Donuts | Coffee) | ||
+ | < | ||
+ | d (3/4) -- c [x = 3/5] [k = p(c and d)] | ||
+ | -- ~c [y = 2/5] | ||
+ | ~d (1/4) -- c (1/3) --> [a = p(c and ~d)] | ||
+ | -- ~c [2/3] | ||
+ | |||
+ | x * 3/4 = p(d and c) = 9/20 | ||
+ | x = 9/20 * 4/3 | ||
+ | = 36/60 | ||
+ | = 6/10 = 3/5 | ||
+ | |||
+ | P(~d ∩ c) = a = 1/4 * 1/3 = 1/12 | ||
+ | P(c) = k + a | ||
+ | k = 3/4 * 3/5 = 9/20 | ||
+ | a = 1/12 | ||
+ | P(c) = 54/120 + 10/120 = 64/120 = 16/30 = 8/15 | ||
+ | |||
+ | c (8/15) -- d [j] | ||
+ | -- ~d | ||
+ | ~c (7/ | ||
+ | j = p(d | c) | ||
+ | p(d and c) = 9/20 이므로 | ||
+ | 8/15 * j = 9/20 | ||
+ | j = 9/20 * 15/8 = 9/4 * 3/8 = 27/32 | ||
+ | </ | ||
+ | |||
+ | |||
</ | </ | ||
Line 263: | Line 290: | ||
$$P(A \vert B) = \frac {P(A \cap B)}{P(B)} $$ | $$P(A \vert B) = \frac {P(A \cap B)}{P(B)} $$ | ||
$$P(A \vert B) = \frac {P(A) * P(B \vert A)}{P(A) * P(B \vert A) + P(A') * P(B \vert A')} $$ | $$P(A \vert B) = \frac {P(A) * P(B \vert A)}{P(A) * P(B \vert A) + P(A') * P(B \vert A')} $$ | ||
+ | |||
This is called "< | This is called "< | ||
Line 328: | Line 356: | ||
* The probability of the ball having landed in a pocket with a number greater than 4 given that it’s red. | * The probability of the ball having landed in a pocket with a number greater than 4 given that it’s red. | ||
* The probability of the ball landing in pockets 1, 2, 3, or 4. | * The probability of the ball landing in pockets 1, 2, 3, or 4. | ||
- | |||
</ | </ | ||
+ | https:// | ||
+ | https:// | ||
+ | https:// | ||
+ | https:// | ||
+ | Question | ||
+ | * The probability of people having the disease is 10%. | ||
+ | * The probability of test being correct is 80%. | ||
+ | * The test says that you have the disease. What is the chance you actually have the disease? | ||
+ | {{: | ||
+ | Question | ||
+ | * 공무를 수행하기 위해서 불법약물을 복용하는지 테스트를 한다고 한다. | ||
+ | * 사람들이 실제 약물을 수행하는 확률은 4% 라고 (0.04) 한다. | ||
+ | * 사람들이 약물을 복용하지 않는데 복용한다고 하는 테스트 결과의 (false positive) 확률은 5% 라고 한다. | ||
+ | * 약물을 복용하는데 복용하지 않는다고 하는 테스트 결과의 (false negative) 확률은 10% 라고 한다. | ||
+ | * 테스트 결과가 양성으로 나올 확률은 얼마인가? | ||
+ | * 약물을 복용한다는 테스트 결과가 나왔는데, | ||
+ | * 이 확률 계산의 중요성에 (significance) 대해서 확인할 것 | ||
+ | Question | ||
+ | * 공항의 수하물가방 검색에서 무기가 발견될 확률은 5% 라고 한다. | ||
+ | * 검색결과가 정확할 확률은 90% 라고 한다. | ||
+ | * 검색에서 무기가 발견되었는데 사실은 무기가 아닐 확률은 (false positive) 얼마인가? | ||
b/head_first_statistics/calculating_probability.1601360158.txt.gz · Last modified: 2020/09/29 15:15 by hkimscil