기하분포
\begin{align*} \text{Geometric Distribution: } \;\;\; \text{X} & \thicksim Geo(p) \\ p(X = k) & = q^{k-1} \cdot p \\ E\left[ X \right] & = \frac{1}{p} \\ V\left[ X \right] & = \frac{q}{p^2} \\ \\ \end{align*}
> dgeom(4, .2) [1] 0.08192 > dgeom(0:4, .2) [1] 0.20000 0.16000 0.12800 0.10240 0.08192 > sum(dgeom(0:4, .2)) [1] 0.67232
> pgeom(4, .2, lower.tail=T) [1] 0.67232 > > pgeom(4, .2, lower.tail=F) [1] 0.32768 > > sum(dgeom(5:1000000, .2)) [1] 0.32768 > > > pgeom(4, .2, lower.tail=T)+pgeom(4, .2, lower.tail=F) [1] 1
> qgeom(.5, .2) [1] 3 > pgeom(3, .2) [1] 0.5904 > qgeom(.6, .2) [1] 4 > > qgeom(1, .2) [1] Inf > qgeom(.2, .2) [1] 0 > > qgeom(.16, .2) [1] 0 > qgeom(.36, .2) [1] 1 >
성공 확률이 .2 일 때 몇번 만에 성공할지 랜덤하게 구하는 것을 다섯 번 하라.
> rgeom(5, .2) [1] 5 6 5 0 8 >
The probability that another snowboarder will make it down the slope without falling over is 0.4. Your job is to play like you’re the snowboarder and work out the following probabilities for your slope success.