Table of Contents

정보의 시각화: 첫인상

Charts

what.is.stats.jpg

mis.presentation.vis.jpg
what.is.wrong.vis.jpg

Pie Chart

good.pie.chart.jpg

Good to go with

—-
Better
better.pie.chart.jpg

—-
Bad
bad.pie.chart.jpg

Bar chart

good.bar.chart.jpg

Histogram

ser freq
1 100
2 88
3 159
4 201
5 250
6 250
7 254
8 288
9 356
10 380
11 430
12 450
13 433
14 543
15 540
16 570
17 450
18 433
19 543
20 690
21 640
22 720
23 777
24 720
25 880
26 900

Excel에서의 histogram

Bin Frequency
199 3
399 7
599 9
799 5
999 2

in R . . . .

dat <- c(100, 88, 159, 201, 250, 250, 254, 288, 356, 380, 
         430, 450, 433, 543, 540, 570, 450, 433, 543, 690, 
         640, 720, 777, 720, 880, 900)
dat
hist(dat)
hist(dat, breaks=5)

Scatter plot

hist(mtcars$hp)

                     mpg cyl  disp  hp drat    wt  qsec vs am gear carb
Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1    4    4
Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02  0  1    4    4
Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
Hornet 4 Drive      21.4   6 258.0 110 3.08 3.215 19.44  1  0    3    1
Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
Duster 360          14.3   8 360.0 245 3.21 3.570 15.84  0  0    3    4
Merc 240D           24.4   4 146.7  62 3.69 3.190 20.00  1  0    4    2
Merc 230            22.8   4 140.8  95 3.92 3.150 22.90  1  0    4    2
Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1  0    4    4
Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40  0  0    3    3
Merc 450SL          17.3   8 275.8 180 3.07 3.730 17.60  0  0    3    3
Merc 450SLC         15.2   8 275.8 180 3.07 3.780 18.00  0  0    3    3
Cadillac Fleetwood  10.4   8 472.0 205 2.93 5.250 17.98  0  0    3    4
Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82  0  0    3    4
Chrysler Imperial   14.7   8 440.0 230 3.23 5.345 17.42  0  0    3    4
Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52  1  1    4    2
Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
Dodge Challenger    15.5   8 318.0 150 2.76 3.520 16.87  0  0    3    2
AMC Javelin         15.2   8 304.0 150 3.15 3.435 17.30  0  0    3    2
Camaro Z28          13.3   8 350.0 245 3.73 3.840 15.41  0  0    3    4
Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0    3    2
Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4    1
Porsche 914-2       26.0   4 120.3  91 4.43 2.140 16.70  0  1    5    2
Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50  0  1    5    4
Ferrari Dino        19.7   6 145.0 175 3.62 2.770 15.50  0  1    5    6
Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0  1    5    8
Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

# Simple Scatterplot
attach(mtcars)
plot(wt, mpg, main="Scatterplot Example",
   xlab="Car Weight ", ylab="Miles Per Gallon ", 
   pch=19)

explanatory (설명) variable at x axis
response (반응) at y axis

But, it does mean no causal relationship between the two variables. Association between two does not guarantee a causal relationship.

Drawing a line among the data.

# Add fit lines
abline(lm(mpg~wt), col="red") # regression line (y~x)

Outlier에 대한 주의

A bit more fancy line

# Enhanced Scatterplot of MPG vs. Weight
# by Number of Car Cylinders
library(car)
scatterplot(mpg ~ wt | cyl, data=mtcars,
   xlab="Weight of Car", ylab="Miles Per Gallon",
   main="Enhanced Scatter Plot",
   labels=row.names(mtcars))

Presentation

For a very good example, see
https://www.gapminder.org/answers/how-does-income-relate-to-life-expectancy/

Histogram skewedness

skewness

.

modality

.

box plot

# Boxplot of MPG by Car Cylinders
boxplot(mpg~cyl,data=mtcars, 
    main="Car Milage Data",
    xlab="Number of Cylinders",
    ylab="Miles Per Gallon")