통계에 대한 기초적인 이해
가설과 가설검증
* 가설의 종류와 그 종류에 따른 통계분석법
* z-test
* t-test
* ANOVA
* Factorial ANOVA
* correlation
* regression
* multiple regression
* factor analysis
* . . .
* 위를 위해서 꼭 이해해야 할 것들
* Variance
* Standard Deviation
* Standard Error (Standard Deviation of Sample Means)
* Hypothesis Testing
R Cookbook
[[:b:r cookbook:getting_started|Chapter 1 Getting Started and Getting Help]]
[[:b:r cookbook:basics|Chapter 2 Some Basics]]
[[:b:r cookbook:navigating|Chapter 3 Navigating the Software]]
[[:b:r cookbook:input output|Chapter 4 Input and Output]]
[[:b:r cookbook:data structures|Chapter 5 Data Structures]]
[[:b:r cookbook:data transformations|Chapter 6 Data Transformations]]
[[:b:r cookbook:strings and dates|Chapter 7 Strings and Dates]]
[[:b:r cookbook:probability|Chapter 8 Probability]]
[[:b:r cookbook:general statistics|Chapter 9 General Statistics]]
[[:b:r cookbook:graphics|Chapter 10 Graphics]]
[[:b:r cookbook:linear regression and ANOVA|Chapter 11 Linear Regression and ANOVA]]
[[:b:r cookbook:useful tricks|Chapter 12 Useful Tricks]]
[[:b:r cookbook:beyond basic numerics and statistics|Chapter 13 Beyond Basic Numerics and Statistics]]
[[:b:r cookbook:times series analysis|Chapter 14 Time Series Analysis]]
[[../2025|이전 페이지]]
* Week 01: March 3, 5
* Week 02: March 10, 12
* Week 03: March 17, 19
* Week 04: March 24, 26
* Week 05: March 31, April 2 (첫번째 퀴즈)
* Week 06: April 7, 9
* Week 07: April 14, 16
* Week 08: April 21, 23
* Week 09: April 28, 30
* Week 10: May 5, 7
* Week 11: May 12, 14
* Week 12: May 19, 21
* Week 13: May 26, 28
* Week 14: June 2, 4
* Week 15: June 9, 11
* Week 16: June 16, 18
* Week 01: March 5, 10
* Week 02: March 12, 17
* Week 03: March 19, 24
* Week 04: March 26, 31
* Week 05: April 2 (첫번째 퀴즈), 7
* Week 06: April 9, 14
* Week 07: April 16, 21
* Week 08: April 23, 28
* Week 09: April 30, May 5
* Week 10: May 7, 12
* Week 11: May 14, 19
* Week 12: May 21, 26
* Week 13: May 28, June 2
* Week 14: June 4, 9
* Week 15: June 11, 16
* Week 16: June 18, 23
====== Week01 ======
Course Introduction --> [[../2025|이전 페이지]]
===== ideas and concepts =====
동영상 (R 관련)
* [[https://youtu.be/6ExajWI_r2w]] 수업소개
* [[https://youtu.be/KYQFY8c2ePI]] R 과 R studio 인스톨
* [[https://youtu.be/qCeTcvWBDNY]] R studio 기초 설명
Introduction to R and others
- Downloading and Installing R
- [[:the_r_project_for_statistical_computing]]
- [[:r]], [[:r:getting started]]
- Starting R
- Entering Commands
- Exiting from R
- Interrupting R
- Viewing the Supplied Documentation
- Getting Help on a Function
- Searching the Supplied Documentation
- Getting Help on a Package
- Searching the Web for Help
- Finding Relevant Functions and Packages
- Searching the Mailing Lists
- Submitting Questions to the Mailing Lists
동영상 (통계관련 샘플링에 대한 설명)
*[[https://youtu.be/1hJm0O-RY4Q]] Sampling 과 관련된 아이디어와 용어 설명
기본용어
기술통계 ([[:descriptive statistics]])
추론통계 ([[:inferential statistics]])
아래의 개념은 [[:sampling|샘플링]] 문서를 먼저 볼것
* 전집 ([[:population]])
* 표본 ([[:sample]])
* 모수치 ([[:sampling#parameter_statistics|parameter]])
* 통계치 ([[:sampling#parameter_statistics|statistics]])
* sampling methods
* probability
* non-probability
가설 ([[:hypothesis]])
* 차이와 연관 (difference and association)
변인 ([[:variables]])
* [[:types of variables]]
* [[:level of measurement]]
===== Assignment =====
====== Week02 ======
===== Concepts and ideas =====
[[:Sampling]]
[[:Hypothesis|가설]]
[[https://youtu.be/k1sdZtdeDu0|지난 동영상 리캡 및 가설에 대한 소개]]
[[https://youtu.be/gLWjVDl2_6o|가설에 대한 소개 및 설명]]
[[https://youtu.be/Q9cradIrY2M|가설이 만들어지는 이유]]
[[https://youtu.be/hvTnKaX6wSg|가설의 예]]
[[https://youtu.be/eno5USKD34U|변인의 종류와 변인측정의수준]]
Some [[:b:r cookbook:basics|basics]]
- Introduction
- Printing Something
- Setting Variables
- Listing Variables
- Deleting Variables
- Creating a Vector
- Computing Basic Statistics
- Creating Sequences
- Comparing Vectors
- Selecting Vector Elements
- Performing Vector Arithmetic
- Getting Operator Precedence Right
- Defining a Function
- Typing Less and Accomplishing More
- Avoiding Some Common Mistakes
----
from the previous lecture (research question and hypothesis)
* [[:Research Question]]s (or Problems)
* Two ideas guided by theories
* Questions on their relationships
* Conceptualization
* [[:Hypothesis]]
* Educated guess (via theories)
* types of hypotheses
* Difference
* Association
* e.g., {{:the_third_person_effect_sprial_of_silence.pdf|양승찬의 논문}} <- 읽을 것
* [[:Variables]] (vs. ideas, concepts, and constructs)
* [[:Operationalization]]
* [[:Types of Variables]]
* [[:Independent Variable|IV]]
* [[:Dependent Variable|DV]]
* Control variable
* Mediating (Intervening) variable
* [[:Level of Measurement]]
[[Lecture note week 02]]
===== Assignment =====
====== Week03 ======
3주차 온라인 강의 동영상은 4주에 걸쳐서 보시기 바랍니다. 즉, 4주 중에 따로 동영상 올리지 않습니다.
* [[https://www.youtube.com/watch?v=nluWkZZ8zM8| MS the 3rd Week 012: the Basic (R cookbook)]] 32:00
* [[https://www.youtube.com/watch?v=IEr7MM4vpEU| MS the 3rd Week 013: Navigating the R]] 12:31
* [[https://www.youtube.com/watch?v=TPSApVNCM_c| MS the 3rd Week 014: Mean, Median, Mode (Howell, Ch. 4 Part)]] 16:17
* https://youtu.be/JvpOJPCBQkQ : R cookbook: data structure
-----
* [[https://youtu.be/_ynGzFFmm7U]] Howell Ch 4. Variance 01: Introduction (DS, error, and SS)
* [[https://youtu.be/HugtyhU7Im8]] Howell Ch. 4. Variance 02: Variance for sample and n-1
* [[https://youtu.be/RE6DSk1DcJI]] 왜 분산에는 n-1을 사용하는가? (직관적인 이해)
* [[https://youtu.be/PrPoOCW3v1s]] n-1 증명
* [[https://youtu.be/Ssznnbdj5Lg]] Degrees of freedom
* [[https://youtu.be/valhVpf-haY]] Standard deviation
-----
Howell, Ch. 4 내용 중 [[:Variance]]와 (분산) [[:Standard deviation]]은 (표준편차는) 이후 통계 검증방법을 이해하는데 기초가 되는 중요한 내용이니 꼭 숙지하시기 바랍니다.
===== Concepts and ideas =====
[[:b:r cookbook:navigating|Navigating]] software
- Introduction
- Getting and Setting the Working Directory
- Saving Your Workspace
- Viewing Your Command History
- Saving the Result of the Previous Command
- Displaying the Search Path
- Accessing the Functions in a Package
- Accessing Built-in Datasets
- Viewing the List of Installed Packages
- Installing Packages from CRAN
- Setting a Default CRAN Mirror
- Suppressing the Startup Message
- Running a Script
- Running a Batch Script
- Getting and Setting Environment Variables
- Locating the R Home Directory
- Customizing R
[[:Mean]]
[[:Mode]]
[[:Median]]
[[:Variance]]
[[:Standard Deviation]]
+-1 sd = 68% = +-1 sd
+-2 sd = 95% = +-1.96 sd
+-3 sd = 99% (99.7%) = +-3 sd
표준점수 (unit with a standard deviation) = [[:z score]]
[[:Sampling distribution]] via random [[:sampling]]
* sa [[:sampling distribution in r]]
[[:Central Limit Theorem]]
===== Assignment =====
====== Week04 ======
===== Class Activity =====
[[lecture note week 04]]
Lecture materials for this week
===== Concepts and ideas =====
[[:b:r cookbook:input_output|Input and output]]
- Introduction
- Entering Data from the Keyboard
- Printing Fewer Digits (or More Digits)
- Redirecting Output to a File
- Listing Files
- Dealing with “Cannot Open File” in Windows
- Reading Fixed-Width Records
- Reading Tabular Data Files
- Reading from CSV Files
- Writing to CSV Files
- Reading Tabular or CSV Data from the Web
- Reading Data from HTML Tables
- Reading Files with a Complex Structure
- Reading from MySQL Databases
- Saving and Transporting Objects
# +-1SD = 68%
# +-2SD = 95%
# +-3SD = 99% 라고 했지만
# pnorm(2) = ?
pnorm(2)
pnorm(2) - pnorm(-2)
pnorm(90,70,10)
pnorm(90,70,10) - pnorm(50,70,10)
pnorm(3) - pnorm(-3)
qnorm(0.975)
qnorm(0.025)
qnorm(0.995)
qnorm(0.005)
pnorm(3) - pnorm(-3)
# sa, http://commres.net/wiki/sampling_distribution_in_r?#n_4
m.ca <- 70
sd.ca <- 10
rnorm(n, m.ca, sd.ca)
set.seed(1001)
iter <- 10000
n <- 4
rnorm(n, m.ca, sd.ca)
means <- rep (NA, iter)
for(i in 1:iter){
means[i] = mean(rnorm(n, m.ca, sd.ca))
}
# according to the prefessor
m.means.should.be <- m.ca
v.means.should.be <- sd.ca^2/n
sd.means.should.be <- sqrt(v.means.should.be)
m.means.should.be
v.means.should.be
sd.means.should.be
m.means <- mean(means)
v.means <- var(means)
m.means
v.means
sd.means <- sd(means)
sd.means
se <- sd.means.should.be
se2 <- se*2
m.means - se2
m.means + se2
s1 <- rnorm(n, m.ca, sd.ca)
mean(s1)
===== Assignment =====
====== Week05 ======
[[lecture note week 05]]
===== Announcement Quiz 01 =====
퀴즈 있습니다.
퀴즈 범위는
* 5주차까지 언급된 모든 동영상
* R 과 관련해서는 동영상 내용만 포함합니다.
* pnorm, qnorm, rnorm, dnorm 등에 대해서는 계속 나옵니다.
* 사용법을 잘 익혀 두세요.
문서
* [[:Sampling]]
* [[:Hypothesis]]
* [[:Variables]]
* [[:Types of Variables]]
* [[:Level of Measurement]]
* [[:Operationalization]]
* [[:Conceptualization]]
* [[:Mean]], [[:Median]], [[:Mode]]
* [[:Variance]], [[:Standard Deviation]]
* [[:Sampling Distribution]]
* [[:Central Limit Theorem]]
* [[:Sampling Distribution in R]]
* 시험문제는 4지선다 혹은 단답식 답입니다.
* 문제는 모두 50문제 정도입니다.
동영상 시청
* https://youtu.be/Qaxj6LZ-iL0 : sampling distribution
* https://youtu.be/0RZJbZtzs6s : sampling distribution e.g. in R
* https://youtu.be/AbeIQvJJ5Vw : mean and variance (standard deviation) in sampling distribution (샘플평균들의 집합에서의 평균과 분산 (표준편차))
* https://youtu.be/zFdbt2XoeM4 : CLT (central limit theorem) and standard error 중심극한정리와 표준오차
* https://youtu.be/Udp-4MLAlvc : Testing hypothesis based on CLT principle CLT에 근거를 둔 가설의 검증
* [[:sampling distribution in r]]
===== Concepts and ideas =====
[[:b:r cookbook:Data Structures]]
- Introduction
- Appending Data to a Vector
- Inserting Data into a Vector
- Understanding the Recycling Rule
- Creating a Factor (Categorical Variable)
- Combining Multiple Vectors into One Vector and a Factor
- Creating a List
- Selecting List Elements by Position
- Selecting List Elements by Name
- Building a Name/Value Association List
- Removing an Element from a List
- Flatten a List into a Vector
- Removing NULL Elements from a List
- Removing List Elements Using a Condition
- Initializing a Matrix
- Performing Matrix Operations
- Giving Descriptive Names to the Rows and Columns of a Matrix
- Selecting One Row or Column from a Matrix
- Initializing a Data Frame from Column Data
- Initializing a Data Frame from Row Data
- Appending Rows to a Data Frame
- Preallocating a Data Frame
- Selecting Data Frame Columns by Position
- Selecting Data Frame Columns by Name
- Selecting Rows and Columns More Easily
- Changing the Names of Data Frame Columns
- Editing a Data Frame
- Removing NAs from a Data Frame
- Excluding Columns by Name
- Combining Two Data Frames
- Merging Data Frames by Common Column
- Accessing Data Frame Contents More Easily
- Converting One Atomic Value into Another
- Converting One Structured Data Type into Another
{{:c:ms:2023:pasted:20230329-102748.jpeg}}
아래 두번째 그림은 population의 평균이 102 일 때
400명을 (1600명이 아니라) 샘플로 취했을 때의
샘플평균들의 집합을 그린것입니다.
{{:c:ms:2023:pasted:20230329-102811.jpeg}}
#####
mu.pop <- 100
sd.pop <- 10
set.seed(101)
treated.group <- rnorm(16, 112, 10)
treated.group
m.tg <- mean(treated.group)
m.tg
# install.packages("BSDA")
# library(BSDA)
z.test(treated.group, mu=mu.pop, sigma.x=sd.pop)
mu.pop <- 100
sd.pop <- 10
set.seed(100)
treated.group.2 <- rnorm(16, 102, 10)
treated.group.2
m.treated.group.2 <- mean(treated.group.2)
m.treated.group.2
# install.packages("BSDA")
# library(BSDA)
z.test(treated.group.2, mu=mu.pop, sigma.x=sd.pop)
set.seed(100)
treated.group.2 <- rnorm(1600, 102, 10)
treated.group.2
m.treated.group.2 <- mean(treated.group.2)
m.treated.group.2
# install.packages("BSDA")
# library(BSDA)
z.test(treated.group.2, mu=mu.pop, sigma.x=sd.pop)
===== Assignment =====
====== Week06 ======
===== Concepts and ideas =====
이번 주 동영상
* https://youtu.be/hX0mbKm6M4s : z-test (z 테스트)
* https://youtu.be/06xTY1cVtb8 : z score (표준점수)
* https://youtu.be/aG8X6EUu7xI : probability in R (R에서의 확률분포함수들)
또한 R에서 데이터를 (테이블 혹은 어레이) 이용하여 function을 적용하는 것에 대해서 잘 익혀두시기 바랍니다. 이는 R cookbook의 아래 내용에 해당이 됩니다 (특히 sapply, tapply, by 등)
[[:b:r cookbook:Data Transformations]]
- Introduction
- Splitting a Vector into Groups
- Applying a Function to Each List Element
- Applying a Function to Every Row
- Applying a Function to Every Column
- Applying a Function to Groups of Data
- Applying a Function to Groups of Rows
- Applying a Function to Parallel Vectors or Lists
Strings and Dates
[[./schedule/week06 t-test and anova note]]
===== Announcement =====
===== Assignment =====
====== Week07 ======
===== Concepts and ideas =====
[[:Hypothesis testing]]
[[:z-test]]
* r 에서 qnorm(proportion) pnorm(z-score) function 이해 필요
* [[:z_score]] 참조
[[:types of error]]
7주차 동영상
* t-test
* https://youtu.be/Eje8lR8EXPc t-test: Intro
* https://youtu.be/BL9TZbDUVWg t-test: One sample t-test
* https://youtu.be/E7QUCYRcbM0 t-test: Independent samples t-test; repeated measure t-test 일부
* https://youtu.be/CV-DY9xdxtc t-test: Repeated measure t-test 계속
* 관련 문서: [[:t-test]]
* [[:r:t-test|t-test in r]]
* r 에서, qt(proportion, df), pt(t-score, df) function 이해 필요
* [[:r/probability?s[]=qnorm]] 참조
* [[:t_distribution_table]] 참조
[[:b:r_cookbook:probability|Probability calculation in R]] <- Probability in R cookbook (텍스트북)
[[:b:r cookbook:Probability]]
- Introduction
- Counting the Number of Combinations
- Generating Combinations
- Generating Random Numbers
- Generating Reproducible Random Numbers
- Generating a Random Sample
- Generating Random Sequences
- Randomly Permuting a Vector
- Calculating Probabilities for Discrete Distributions
- Calculating Probabilities for Continuous Distributions
- Converting Probabilities to Quantiles
- Plotting a Density Function
[[./w07 anova note]]
[[./w07.2 factorial anova]] or two way anova
===== Assignment =====
----
* 가설 만들어 보기
* [[http://behavioralsciencewriting.blogspot.kr/2011/09/how-to-write-hypothesis.html|how to write hypothesis]] at behavioral science writing.
* One sample hypothesis [[http://www.socialresearchmethods.net/kb/hypothes.php|Hypothesis]] at www.socialresearchmethods.net
===== 8주차 퀴즈 =====
8주차 정기시험기간 중에 2차 퀴즈
* 4월26일, 09:00 ~ (A, B교시)
* 범위
* 처음부터 One-way ANOVA test with post hoc test 까지 (R square에 대한 설명포함)
* 제 9주차 내용이지만 수업시간에 다룬 것만 시험에 나옵니다.
* 동영상은 7주차까지 보셔야 합니다
* [[:Sampling]]
* [[:Hypothesis]]
* [[:Variables]]
* [[:Types of Variables]]
* [[:Level of Measurement]]
* [[:Mean]] [[:Median]] [[:Mode]]
* [[:Variance]], [[:Standard Deviation]]
* [[:Sampling Distribution]]
* [[:Central Limit Theorem]], [[:Hypothesis Testing]]
* [[:z-test]]
* [[:t-test]]
* [[:ANOVA]]
* [[:post hoc test]]
====== Week08 ======
시험기간
보강영상 수업
====== Week09 ======
===== Concepts and ideas =====
영상 ANOVA
* https://youtu.be/bNK5iIjAoHI : Intro to ANOVA (F-test)
* https://youtu.be/L9ns0vuvWJ8 : principles of ANOVA
* https://youtu.be/xOixsz4Qkz0 : ANOVA, calculation based on the priciple
* https://youtu.be/kyVXFS3jts4 : post-hoc test / t-test vs. ANOVA
위키페이지 참조
* [[:ANOVA]]
* [[:Factorial ANOVA]]
* [[:repeated measure anova]]
[[:b:r cookbook:General Statistics]]
- Introduction
- Summarizing Your Data
- Calculating Relative Frequencies
- Tabulating Factors and Creating Contingency Tables
- Testing Categorical Variables for Independence
- Calculating Quantiles (and Quartiles) of a Dataset
- Inverting a Quantile
- Converting Data to Z-Scores
- Testing the Mean of a Sample (t Test)
- Forming a Confidence Interval for a Mean
- Forming a Confidence Interval for a Median
- Testing a Sample Proportion
- Forming a Confidence Interval for a Proportion
- Testing for Normality
- Testing for Runs
- Comparing the Means of Two Samples
- Comparing the Locations of Two Samples Nonparametrically
- Testing a Correlation for Significance
- Testing Groups for Equal Proportions
- Performing Pairwise Comparisons Between Group Means
- Testing Two Samples for the Same Distribution
vene . . . go or come
intervene
* intervenient
convene
* convention
* convent
* convenient
contravene
prevent
advent
circumvent
===== Assignment =====
====== Week10 ======
===== Concepts and ideas =====
10주차 동영상입니다.
* https://youtu.be/IpuyWhk1R9g : Factorial ANOVA
* https://youtu.be/UuJhej1eJJI : Factorial ANOVA by hand
* https://youtu.be/rl6zs1lK0BE : Factorial ANOVA egs.
see [[./schedule/w10.lecture.note]]
===== Assignment =====
====== Week11 ======
===== Concepts and ideas =====
동영상 (총 5 개)
* https://youtu.be/vwxdhllHM-8 : Repeated Measures ANOVA, Intro
* https://youtu.be/L_jzB650Llo : Repeated Measures ANOVA in R
----
* https://youtu.be/Cj7mxGBrIU8 : Correlations 01
* https://youtu.be/oYKFeuAn140 : Correlations 02
* https://youtu.be/aHdb4j3ybX8 : Spearman (Rank ordered) Correlation
[[./schedule/w11.lecture.note]]
[[:repeated measure ANOVA]]
[[:correlation]]
----
[[:regression]]
[[:multiple regression]]
[[:using dummy variables]]
[[:r:getting started]]
[[:b:r cookbook:basics]]
[[:b:r cookbook:navigating]] in r
[[:b:r cookbook:input output]] in r
[[:b:r cookbook:data structures]]
[[:b:r cookbook:data transformations]]
----
[[r:graphics|Graphics]]
- Introduction
- Creating a Scatter Plot
- Adding a Title and Labels
- Adding a Grid
- Creating a Scatter Plot of Multiple Groups
- Adding a Legend
- Plotting the Regression Line of a Scatter Plot
- Plotting All Variables Against All Other Variables
- Creating One Scatter Plot for Each Factor Level
- Creating a Bar Chart
- Adding Confidence Intervals to a Bar Chart
- Coloring a Bar Chart
- Plotting a Line from x and y Points
- Changing the Type, Width, or Color of a Line
- Plotting Multiple Datasets
- Adding Vertical or Horizontal Lines
- Creating a Box Plot
- Creating One Box Plot for Each Factor Level
- Creating a Histogram
- Adding a Density Estimate to a Histogram
- Creating a Discrete Histogram
- Creating a Normal Quantile-Quantile (Q-Q) Plot
- Creating Other Quantile-Quantile Plots
- Plotting a Variable in Multiple Colors
- Graphing a Function
- Pausing Between Plots
- Displaying Several Figures on One Page
- Opening Additional Graphics Windows
- Writing Your Plot to a File
- Changing Graphical Parameters
===== Assignment =====
과제명: ms23.w11.ga.covariance.exercise
제출파일명: ms23.w11.ga.covariance.exercise.group##.odc (docx)
과제내용:
아래 데이터를 다운로드 받아서 두 변인 간의 상관관계계수를 구하시오.
{{:income.happiness.csv}}
데이터는 수입과 행복을 측정한 것입니다. 실제 데이터를 살펴보고 R로 읽어 온 후에 R을 이용하여 아래를 구하시오. R에서의 명령어와 아웃풋을 카피/패이스트 하여 제출하시오 (fixed-font를 사용하여).
* 각 변인의 deviation score 값을 구하여 ds.inc 와 ds.hap 에 저장하시오.
* 두 변인의 SP값을 (Sum of Product) 구하여 sp.dat 에 저장하시오.
* 두 변인의 df값을 구하여 df.dat 에 저장하시오.
* 두 변인간 covariance값을 r의 cov 명령어를 이용하여 구하여 cov.dat값에 저장하시오.
* sp.dat / df.dat 값을 구하여 cov.cal 값에 저장하시오.
* cov.cal 과 cov.dat 값이 같은지 비교하시오. (힌트: ''=='' 연산자를 이용하여 확인하시오)
* 각 변인의 standard deviation 값을 구하여 sd.inc, sd.hap에 저장하시오
* 우리가 배운 correlation값을 구하는 공식에 따라서 r 값을 구해서 r.cal 에 저장하시오.
* R의 cor 명령어를 이용하여 correlation coefficient값을 구하여 r.dat 에 저장하시오.
* r.cal 과 r.dat 을 비교하시오.
====== Week12 ======
May 22 (월), 24 (수)
[[./schedule/w12.lecture.note]]
===== Announcement =====
===== Concepts and ideas =====
동영상 Regression
- https://youtu.be/68gho4ubOjs : Regression 1. Intro
- https://youtu.be/qXSRgSh1rw0 : Regression 2. e.g. 1
- https://youtu.be/I8wt2W7-Iio : Regression 3. e.g. 2
[[:chi-square test]]
[[:b:r cookbook:probability]]
[[:b:r cookbook:general statistics]]
Graphics
===== Assignment =====
====== Week13 ======
May 29 (월), 31 (수)
May 31 (수)
6월 5일 (월) 세번째 퀴즈
퀴즈 범위는
처음부터 multiple regression까지
퀴즈 범위는
stats part
* [[:sampling distribution]]
* [[:central limit theorem]]
* [[:hypothesis testing]]
* [[:z-test]]
* [[:types of error]]
* [[:t-test]]
* [[:ANOVA]]
* [[:Factorial ANOVA]]
* [[:Repeated Measure ANOVA]]
* [[:correlation]]
* [[:Regression]]
* [[:Multiple Regression]]
* [[:Interpretation of Multiple Regression]]
* [[:Partial and semipartial correlation]]
r part
* [[:b/r_cookbook/data_structures|Data structure in r]]
* [[:b:r cookbook:data transformations|Data transformation in r]]
* [[:b:r_cookbook:general statistics]] in r
r은 주로 아웃풋에 대한 질문이 있을 예정입니다. 오픈 북이니 모든 명령어 등을 외울 필요는 없습니다.
===== Concepts and ideas =====
영상
* https://youtu.be/LOEinkXaskA : Multiple Regression 01 Intro.
* https://youtu.be/v6LswXPvEWY : Multiple Regression 03 Interpreting ivs
* https://youtu.be/tc6wb7fBmiY : Week13 Multiple Regression 02 Dummy variables
===== Assignment =====
====== Week14 ======
June 5(월), 7(수)
영상보기
* https://youtu.be/AXMtT5cYpZ4 Factor Analysis
===== Concepts and ideas =====
[[:using dummy variables|Including Dummy variables]]
[[:r:dummy variable]] with R
[[:interaction effects in regression analysis]]
[[:sequential regression]]
[[:beta coefficients]]
[[:mediation analysis]]
===== Assignment =====
====== Week15 ======
June 12, 14
===== Assignment =====
그룹 assignment: ms.23.ga.w15.multiple.regression.groupID
그룹의 아래의 두 개 중 하나를 택하여 수행하시오. 6월 19일까지 완성 (ABB)
- 일
* data: elemapi2.csv
* available at http://commres.net/wiki/_media/r/elemapi2.csv
* api00 을 종속변인으로 하고 관련이 있을 것 같고 흥미로운 변인들을 독립변인으로 하여 (최소한 3개 이상, 그 중 하나는 종류변인이어야 합니다) multiple regression을 디자인 하고 이를 수행한 후 경과와 결과를 보고하시오
* api00을 종속변인으로 하고 두 개의 독립변인으로 avg_ed와 mealcat 두 개를 골라서 interaction을 포함한 regression을 수행한 후 경과와 결과를 보고하시오.
- 이
* data: College (in ISLR package in R)
* data에 대한 정보
* ''library(ISLR)'' 후 ''?College''
* 종속변인 하나를 골라서 다른 독립변인들을(최소 3개 이상) 가지고 Regression을 수행한 후 경과와 결과를 보고하시오.
* 위에서의 종속변인과 두개의 독립변인을 골라서 (숫자+숫자 혹은 숫자+종류) interaction 효과를 포함하는 Regression을 한 후에 경과와 결과를 보고하시오
====== Week16 ======
June 19, 21 (퀴즈일자에만 퀴즈를 보고 수업은 없음)
__**Final-term**__
* 마지막 퀴즈
* 범위는 다음과 같습니다.
* Statistics
* [[:sampling distribution]]
* [[:central limit theorem]]
* [[:hypothesis testing]]
* [[:z-test]]
* [[:types of error]]
* [[:t-test]]
* [[:ANOVA]]
* [[:Factorial ANOVA]]
* [[:Repeated Measure ANOVA]]
* [[:correlation]]
* [[:Regression]]
* [[:Multiple Regression]]
* [[:beta coefficients]]
* [[:r:dummy variable]]
* [[:interaction effects in regression analysis]]
* [[:interaction effects in regression analysis]]
* [[:sequential regression]]
* [[:beta coefficients]]
* R 관련 문제는 아웃풋을 이해하는지에 치중을 하시면 됩니다. 실제 명령어 사용 등에 대한 문제는 나오지 않습니다.