###################################################### > ## data file: PlannedBehavior.csv > ###################################################### > df <- read.csv("http://commres.net/wiki/_media/r/plannedbehavior.csv") > head(df) attitude norms control intention behavior 1 2.31 2.31 2.03 2.50 2.62 2 4.66 4.01 3.63 3.99 3.64 3 3.85 3.56 4.20 4.35 3.83 4 4.24 2.25 2.84 1.51 2.25 5 2.91 3.31 2.40 1.45 2.00 6 2.99 2.51 2.95 2.59 2.20 > str(df) 'data.frame': 199 obs. of 5 variables: $ attitude : num 2.31 4.66 3.85 4.24 2.91 2.99 3.96 3.01 4.77 3.67 ... $ norms : num 2.31 4.01 3.56 2.25 3.31 2.51 4.65 2.98 3.09 3.63 ... $ control : num 2.03 3.63 4.2 2.84 2.4 2.95 3.77 1.9 3.83 5 ... $ intention: num 2.5 3.99 4.35 1.51 1.45 2.59 4.08 2.58 4.87 3.09 ... $ behavior : num 2.62 3.64 3.83 2.25 2 2.2 4.41 4.15 4.35 3.95 ... > ###################################################### > # attitude > # norms > # control > # intention > # behavior > ###################################################### > # install.packages("lavaan") > library(lavaan) This is lavaan 0.6-9 lavaan is FREE software! Please report any bugs. Warning message: 패키지 ‘lavaan’는 R 버전 4.1.2에서 작성되었습니다 > > # Specify model > specmod <- " + intention ~ attitude + norms + control + " > # Estimate model > fitmod <- sem(specmod, data=df) > > # Summarize model > summary(fitmod, fit.measures=TRUE, rsquare=TRUE) lavaan 0.6-9 ended normally after 11 iterations Estimator ML Optimization method NLMINB Number of model parameters 4 Number of observations 199 Model Test User Model: Test statistic 0.000 Degrees of freedom 0 Model Test Baseline Model: Test statistic 91.633 Degrees of freedom 3 P-value 0.000 User Model versus Baseline Model: Comparative Fit Index (CFI) 1.000 Tucker-Lewis Index (TLI) 1.000 Loglikelihood and Information Criteria: Loglikelihood user model (H0) -219.244 Loglikelihood unrestricted model (H1) -219.244 Akaike (AIC) 446.489 Bayesian (BIC) 459.662 Sample-size adjusted Bayesian (BIC) 446.990 Root Mean Square Error of Approximation: RMSEA 0.000 90 Percent confidence interval - lower 0.000 90 Percent confidence interval - upper 0.000 P-value RMSEA <= 0.05 NA Standardized Root Mean Square Residual: SRMR 0.000 Parameter Estimates: Standard errors Standard Information Expected Information saturated (h1) model Structured Regressions: Estimate Std.Err z-value P(>|z|) intention ~ attitude 0.352 0.058 6.068 0.000 norms 0.153 0.059 2.577 0.010 control 0.275 0.058 4.740 0.000 Variances: Estimate Std.Err z-value P(>|z|) .intention 0.530 0.053 9.975 0.000 R-Square: Estimate intention 0.369