User Tools

Site Tools


types_of_error

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
types_of_error [2018/09/27 23:15] hkimsciltypes_of_error [2025/11/25 22:14] (current) hkimscil
Line 1: Line 1:
 {{description>types of error, 오류의 종류, 1종 오류, 2종 오류, type I error, type II error}} {{description>types of error, 오류의 종류, 1종 오류, 2종 오류, type I error, type II error}}
 {{keywords>types of error, 오류의 종류, 1종 오류, 2종 오류, type I error, type II error}} {{keywords>types of error, 오류의 종류, 1종 오류, 2종 오류, type I error, type II error}}
 +
 +이 예는 감자의 예랑은 방향이 달라서 안 맞으므로 머리가 좋아지는 약 혹은 XR을 이용해서 공부하는 방법으로 통계점수가 달라지는 가설을 생각한다. 모집단의 평균은 0이고 샘플사이즈에 따른 표준오차는 1 이 되는데, 내 샘플의 평균이 어디선가 발견되는 순간이다 (see [[:hypothesis_testing#eg01|Hypothesis testing example]] )
 +
 +
 ====== Types of error ====== ====== Types of error ======
-<imgcaption fig1|Types of error>{{ :types_of_error.png?500}}</imgcaption> +<imgcaption fig1|Types of error>{{ :pasted:20200501-173355.png?600}}</imgcaption> 
 요약 요약
-  * black line(bl): $\overline{x}=0, \texta{sd}=1$ 정규분포곡선 = 영가설 Null Hypothesis +  * black line(bl): $\overline{x}=0, \text{sd}=1$ 정규분포곡선 = 영가설 Null Hypothesis 
-  * red line(rl):  $\overline{x}=3, \texta{sd}=1$ 정규분포곡선 = 연구가설 Alternative Hypothesis+  * red line(rl):  $\overline{x}=3, \text{sd}=1$ 정규분포곡선 = 연구가설 Alternative Hypothesis
   * green line: 가설테스트를 했을 때 영가설을 부정하게 되는 기준 (sd=2).   * green line: 가설테스트를 했을 때 영가설을 부정하게 되는 기준 (sd=2).
   * 노란색 부분: type I error   * 노란색 부분: type I error
Line 11: Line 15:
  
 설명 설명
-  * H1: $\display\mu_{\text{black}} \neq \mu_{\text{red}} \;\;\; (0 \neq 3) $  +  * H1: $\mu_{\text{black}} \neq \mu_{\text{red}} \;\;\; (0 \neq 3) $  
-  * H0: $\display\mu_{\text{black}} = \mu_{\text{red}} \;\;\; (0 = 3) $ +  * H0: $\mu_{\text{black}} = \mu_{\text{red}} \;\;\; (0 = 3) $ 
  
-  * H1: 새로운 약의 효과가 3시간 지속되어 기존의 약과 다를 것이다. +  * H1: 새로운 약의 효과는 기존 약과 다를 것이다. 
   * H0: 새로운 약의 효과가 없을 것이다.   * H0: 새로운 약의 효과가 없을 것이다.
  
-실제 현상이 (약의 효과가) 있는 것으로 가정하면 붉은 선이 현실이 된다. 그러나 연구자는 붉은 선은 가정을 할 뿐 알 수 없으며, 검은 선을 가지고 (즉 영가설을 가지고) 판단을 하게 된다. 이 때 판단의 기준은 녹색 선이며, 이는 SE 단위 둘을 사용한 .05를 가르킨다.+실제 현상이 (약의 효과가) 있는 것으로 가정하면 붉은 선이 현실이 된다. 그러나 연구자는 붉은 선은 가정을 할 뿐, 실제로는 알 수 없으며, 검은 선을 가지고 (즉 영가설을 가지고) 판단을 하게 된다. 이 때 판단의 기준은 녹색 선이며, 이는 SE 단위 둘을 사용한 .05를 가르킨다.
  
 <WRAP classes #type_i_error width :language>**__Type I Error__**</WRAP> <WRAP classes #type_i_error width :language>**__Type I Error__**</WRAP>
Line 24: Line 28:
 <WRAP classes #type_ii_error width :language>**__Type II Error__**</WRAP> <WRAP classes #type_ii_error width :language>**__Type II Error__**</WRAP>
 그러나, 만약에 //샘플의 평균이 회색 부분의 선에서 나타났다면//, 연구자는 critical region을 넘지 못하였으므로 이것을 영가설의 모집단에서 나온 샘플의 평균으로 생각하게 된다. 따라서 영가설 부정에 실패하여, 연구가설을 지지하지 못하게 된다 (C). 그런데, 사실은 그 샘플의 평균이 붉은선의 모집단에서 나왔다고 한다면, 옳은 결론은 영가설은 거짓이어야 한다. 그런데, 이 가설검증에서 연구자는 영가설이 참, 따라서 연구가설은 거짓으로 잘못 진단한 것이다 (D). 이 범위를 type II error 혹은 베타($\beta$)라고 한다. 그러나, 만약에 //샘플의 평균이 회색 부분의 선에서 나타났다면//, 연구자는 critical region을 넘지 못하였으므로 이것을 영가설의 모집단에서 나온 샘플의 평균으로 생각하게 된다. 따라서 영가설 부정에 실패하여, 연구가설을 지지하지 못하게 된다 (C). 그런데, 사실은 그 샘플의 평균이 붉은선의 모집단에서 나왔다고 한다면, 옳은 결론은 영가설은 거짓이어야 한다. 그런데, 이 가설검증에서 연구자는 영가설이 참, 따라서 연구가설은 거짓으로 잘못 진단한 것이다 (D). 이 범위를 type II error 혹은 베타($\beta$)라고 한다.
 +
 +{{tabembedded>:types_of_error:code01|R script, types_of_error:output01|R output}}
 +
 +
  
 위의 설명은 아래 표와 같이 정리할 수 있다. 위의 설명은 아래 표와 같이 정리할 수 있다.
Line 33: Line 41:
  
 알파의 경우는 연구자가 정하는 방법으로 컨트롤할 수 있다. 그러나, 베타의 경우는 알파와 같은 방법을 사용할 수는 없다. 베타를 줄이는, 즉 영가설이 거짓으로 부정을 해야하는데 그렇게 하지 못하는 경우를 줄이는 방법으로 상식, 보편적인 것은 샘플의 n을 키우는 것이다. 좀 더 설명하자면, 위의 그래프 <imgref fig1>에서 각각은 샘플링분포곡선을 의미하므로 각 라인의 표준편차는 표준오차를 의미한다. 표준오차가를 줄이게 되면 두 라인이 서로 겹쳐질 경우가 줄어들게 되고, 이는 곧 베타의 감소를 의미한다.  알파의 경우는 연구자가 정하는 방법으로 컨트롤할 수 있다. 그러나, 베타의 경우는 알파와 같은 방법을 사용할 수는 없다. 베타를 줄이는, 즉 영가설이 거짓으로 부정을 해야하는데 그렇게 하지 못하는 경우를 줄이는 방법으로 상식, 보편적인 것은 샘플의 n을 키우는 것이다. 좀 더 설명하자면, 위의 그래프 <imgref fig1>에서 각각은 샘플링분포곡선을 의미하므로 각 라인의 표준편차는 표준오차를 의미한다. 표준오차가를 줄이게 되면 두 라인이 서로 겹쳐질 경우가 줄어들게 되고, 이는 곧 베타의 감소를 의미한다. 
 +
 +<imgcaption fig1|standard error = 1 일 경우>{{:pasted:20200501-173355.png?300}}</imgcaption> 
 +<imgcaption fig2|standard error = 0.5 일 경우. 회색부분이 생길 가능성이 거의 없다는 것에 주목하라.>{{:pasted:20200501-184558.png?300}}</imgcaption> 
 +
  
 ====== E.G. ====== ====== E.G. ======
types_of_error.1538090151.txt.gz · Last modified: by hkimscil

Donate Powered by PHP Valid HTML5 Valid CSS Driven by DokuWiki